Game Notebook
Project Magma

Displacement and Self-lllumination Brazil r/s Alpha

—

mik clark

Janick Bernet
Dominik Kaser
Christian Oberholzer

29.05.2009

TABLE OF CONTENTS

Table of Contents 2
Part 1 — Formal Game Proposal 4
L) o F PSP PPPPPPPPPON 4
e} oY 0 b= 1IN D =TYol 5o Y4 o o [PPSR 4
(01 VT SRR 4
O T T =T =T 0 01T) 4P SP 4
(00T o [o=Y o] (=] ol o 1= PRSP 7
FOIrmMal REQUITEMENTS ..uviiiiiiiie ittt ettt ettt ettt e st e e s st e e s sbte e e s sbteeessabteeessbaeeessnsteeessseeeesanns 11
[CT=T 01T = PSSRSOt 11
LG U YAV 5 2 1 o SRR 11
I)V PP PPPPPRS 11
T = SRR UUURR 11
Lo T [T 1 =T Vo RS 12
o] P21 PRSP 12
DeVEloPMENT SCREAUIEt e e s st e e e s bae e e e sbteeeesbeeeasane 13
(DL 11V T =Y o] [T UUUR 14
YT =T o oY= PR STR 15
Task Assignments and Work Estimationcoooiiiiiiiiiiie et 16
Development TIMELAIEeiii e ree e e e s e 18
AASSESSIMEBNT it 19
Part 2 — Prototype 21
GaAMEPIAY SCIrEENSNOTS......ieii et e e e e et e e e e e abe e e e e traeeeenbeeeeenteeeeenres 22
ST g AP SRT 23
o0 1Y T oY o V= PPPPRS 23
o N < g e T 1V =T 0 1= | U USTR 23
ISIANA TFAVE ..t ettt st e s e st e e bt e e s bt e e sabeesabeesabaeesabaesanes 24
e 1= 10 L= =T G WU T o ¥ = PP 24
Part 3 — Interim Report 25
Week 1: FUNCioNal MINIMUML.......uiiiiiii et e e e e tree e e e e e e e s b e e e e e e e e e e s snnbnaaeeaeaeesnannes 25
(01 0= =TSSPt 25
F T a1 TA V=T o T o PSP PRPN 25
0T o] =T o 13RS 25
B I T e Yo [Lot R 25
WeEek 2: LOW TarZEt PArt L...cccuiieiiciiie ettt tee e st e e et e e et e e e e st e e e e s nnbaeeeenbaeeesnnneeeeennees 26

[0 0 T 0¥ = T U UERUROt 26

o o[ToA =T 4 1T o TP PPNt 26
0] o] 1=T o 0 3SR 26
Y =TT 1] oo 5SS 27
Production Example - Collision DELECLIONcccccuiiieieiiiieecciee ettt e e e e naee e 29
OVEIVIBW s s s s s s s s s s s s s s s s e s s s e e e e s e e e s enesasasensasssnsssssssssssssssnsssssssssssesssnsnnnnenenns 29
2T o To I o o T 1Y YRS 29
COllISION VOIUMES ... ttiii ittt et e e s sttt e e s sbte e e s sbteeessabteeessbaeeessasteeessasraeassnne 29
Production Example —Creating Lava SUMfaces..........ooivciiiiiciiiee et 30
First ApProach: Lava PIanescocuieeiiciiie ettt e et e e e tre e s e tee e s e eate e e e e earae e e e nnneeas 30
Going beyond planes: Parallax Occlusion Mapping.......ccveeeecieieeiiieieeecieee et e eeciee e e ereeee e 31
Part 4 — Alpha Release 34
Bl 1S3 e Yo [¥ T PP PUPRN 34
(01 7T o T~ PPPUPUPPRNt 34
FANo] o TR V7T 0 o [T o TR UURR 34
[T 0] o1 1= 3 oLy 35
(o To [¥Toru oY ol 01T g Y o1 [T PSR 35
=001V 710 o1 00T o | N 35
[11 PP UPP PP PPPPPRE 36
Y Y a1 g =1 [0] E 3PPt 36
VIO A1 oY== To LT =S PRUPP 37
2 [L= USSR 38

PART 1 - FORMAL GAME PROPOSAL

INTRO

For reasons still being researched, volcanoes started to appear all over Antarctica, flushing
resources of unprecedented value onto the earth's surface. Although the resources legally
belong to the state of Antarctica, the immense value of said resources led other fractions to
claim ownership. Day after day, new gatherers arrived, trying to capture as much as they
could. As the situation got out of control, the world union decided to legally distribute the
resources all over the planet. In a time of great decadence it was decided that shares shall
be dispensed based on the outcomes of deadly robot-matches inside the volcanoes. Since
then, engineers all over the world have constantly been working on improving their robots
in order to be able to explore and to claim the deadly depths of Antarctica's volcanoes.

INFORMAL DESCRIPTION

OVERVIEW

The game features 2-4 players competing against each other (mainly in death match, but
other modes such as control point or capture-the-flag are also conceivable) on one screen,
viewed from a fixed angle (no scrolling, but automatic zoom has to be tested). The screen
wraps around: if a player leaves to the right he will enter from the left and vice versa.

The competition takes place around a lake of lava. Large pillars stick out of the lava into the
sky. Between the pillars, there are islands hovering on different heights. The players can
stand on these islands, change the paths of the islands and go from one island to another.
Islands can collide with each other and pillars, which can result in islands and/or pillars
falling down and taking other objects with them. When a player stands on an island, it will
slowly lose height because of the added weight. If a player leaves the island before it
eventually sinks into the lava, it hovers back to its original position. Sunken islands can be
replaced by new ones using a ray of cold water. Periodically, eruptions from the lava in the
form of fireballs will appear and hurt players if they get hit.

GAME ELEMENTS

ENVIRONMENT

The game environment consists of a rectangular field where all the action takes place. The
borders wrap around, meaning that everything disappearing on one side reappears on the
other side. This battle ground basically consists of the following three different elements:

e Asea of lava covers the ground and is - of course - deadly to the players
e Rock pillars of different sizes stick out of the lava
e Rockislands hover on a specific height above the field of lava.

A more precise definition of these elements follows.

PILLARS

Pillars just stick out of the lava. Islands can collide with them and tilt them over. When a
pillar falls, it can take other pillars or islands with it. On the top, the pillars are covered in
ice which is constantly melting — therefore, water runs down along the pillars.

HOVERING ISLANDS

Islands hover on a specific height (Y axis) on a specific path between the pillars. When
islands collide with each other or pillars, they are only deflected from their path on the XZ
plane and never leave their fixed position on the Y axis. Players can stand on islands, but
they will slowly lose height and eventually melt in the lava below. Islands are covered by
grass and other flora. Islands in the upper heights can also be covered in ice.

PLAYER CHARACTERS

Players control characters, which have a certain amount of health and energy. A player can
move between the islands and attack other players. While melee attack is free, energy is
consumed if a player performs some special attack (see Indirect combat (Chicken tactics)).
Health is deduced when a player gets hit by another players attack. If a player’s health is
zero or below, he dies and loses. A player also dies when falling into the lava.

POWER-UPS

Simple power ups for health and energy are distributed over the islands. They will
randomly re-appear if collected.

PLAYER INTERACTIONS

Every player can perform the following actions without using any finite resource:

EWALKING (BORING BUT NECESSARY)

Players can walk around the islands, though they cannot fall from them just by walking.

ECOLLECT POWER-UPS (RED BULL GIVES YOU WINGS!)

If a player gets in contact with a power-up he can collect it and will receive the power
accordingly.

ISLAND ATTRACTION (USE THE FORCE, LUKE)

Islands can be attracted using some fancy force which makes them slowly move towards
the island the player is standing on, so he can switch to the other island.

EISLAND JUMP (UP AND AT THEM)

The player can activate his jet pack for a very short amount of time which allows him to go
from one island to another.

ISLAND REPULSION (GASSY EMISSION)

The player can change the path of an island either temporarily or completely. He does so by
grasping the island and emits a burst of air using his jet pack.

DIRECT COMBAT (MANO-A-MANO)

Every player has a melee attack ability which costs no energy. A melee attack will both
deduce health from his enemy as well as physically push the opponent away from the
attacker. The latter one can be exploited to push an opponent over the edge of an island.

Furthermore, every player has energy as a resource. Energy will recharge itself with time
and can be used to perform the following actions:

INDIRECT COMBAT (CHICKEN TACTICS)
A player has various means of indirect combat in the form of special abilities:

e Ice spike: The player can specify a direction in which, subsequently, a spike is sent
off. If the spike hits an enemy, he will get hurt and frozen for a short period. If the
spike hits lava, an island will be created.

e Snow storm: The player can specify a point in range; a cloud will appear and start
snowing on the creatures below it, causing damage.

e Fire wall: The player can lighten up a fire on the floor which will remain there for a
fixed amount of time. Players stepping on the fire will be hurt.

e Small robot spawning (aka binary fission): The player can spawn a robot on the
current island which will be there for a fixed amount of time and attack all enemies
stepping on the island.

CONCEPT SKETCHES

TYPICAL IN-GAME SITUATION

. 5 i
i 7 ¥ lv ¥ = ¥
= ” 10 -
. =1 Ul = - 1
! I =7 e
oo \ . ¢
= = : 13
7 gl 8 = = o
ql RS L 4—-41"
et | : 2
\F JERe - = [§
i hESEE S £
7 ATl i bt =
= L '-‘ ¥ l__ - 4 t B
| ! { { = i
< I % AR]
\ . | |- i i | RR L
e 1 T =T | E
{ Ly L‘—‘] il 3 ; |
= J :\‘ 7 : -
i : — '—(- i - 1 b= IR
= = = ‘ g 41 [Z i
T] T (11 spam
TR W [] ,j{ i & B 1
: 1 N leve 4 T E &
Tt ' i T TN ; : 2 B
O EE] i 3
L T r 1 1 Ry
% LS - - i L2
o ! ﬁL

On this image one sees:

e 4 pillars

e 3 lslands floating, two of them on the same height

e Estimated collision point between the green and the brown island. After the
collision, they will change their movement direction.

e Players are visualized by rectangles. Player 1 sits on the brown island waiting to

shoot at player 2. Player two on the other hand flees from the crash onto the blue
island.

VISUAL IMPRESSION

How the game could look when it is done.

PERSPECTIVE STUDIES

An alternate view angle of 18 degrees. It is An alternate tilt angle of 38 degrees. The
difficult here to navigate in the XZ plane. notion of height is difficult to grasp here.

We deemed this view to be optimal in both perspective (f=21) and tilt angle (26 degrees).

An alternate perspective, f=21. The distortion A more orthographic perspective, f=71.
is too large, players would stay in the front. There is no dramatics, the look and feel is
too static.

MODEL ANIMATION STATES

A finite state automata model of
player animations. Colors

attack_longrange
fj denote priorities of realization

‘//v (green is high, red is low).

Outlined states denote looping

falling

walking ™ standing animations.

pushed_| back

|ROBOT MODELS

We particularly like the look and feel of this robot we found on the
web. The head is over proportional to the body which yields a more
comic look and feel. We might want to go for a longer head to
make it look more aggressive, though.

A concept of little prop robots which are
spawned on islands to make an island
hostile (high target).

FORMAL REQUIREMENTS

GENERAL
ReqGO01 Basic Camera
ReqG02 Advanced
Camera
ReqG03 Basic Software
Framework
ReqG04 HDR Rendering
ReqG05 Shadow
Rendering
ReqG06 Statistics
GUI AND HUD
ReqUIO1 Start Screen
ReqUIO2 High Score
ReqUIO3 Text Input
ReqUIO4 Player Selection
ReqUIO5S Map Selection
ReqUI06 Simple HUD
ReqUI07 Fancy HUD
ReqUIO8 Intro
LAVA
ReqL01 Lava Ground
ReqlL02 Basic Lava Effect
ReqlL03 Polished Lava
Effect
Reql04 Deadly Lava
ReqlL05 Fire Eruptions
ReqL06 Harmful Fire
Eruptions
PILLARS
RegPi01 Pillars

The basic camera captures the scene from a predefined position. The
whole game area is always visible.

The camera films the scene from a varying position. It always films
from the same side, but height an zoom may vary depending on the
optimal setting.

Setting up a generic framework that is expandable, embeds the game
logic, graphics and similar. The framework should be built as much on
XNA as possible. But still every new feature should be addable as a
separate component.

Setting up the renderer to render with high definition textures and
effects. This feature significantly improves the visual appearance of
the game.

Rendering the scene with shadows using a state-of-the art technique.

Keep track about players win and looses, their longest live, their
fastest kill and their fastest death.

There is a start screen from where one can start a new game and
view the high score.

The high score features statistics (defined in Req06) about past
games.

Text can be entered using the controller.

Players can select their desired character and enter their name.
The first player can select a map to play in.

A HUD showing each players health and energy has to be available.
A beautifully designed HUD that nicely integrates with the game
environment has to be available.

An intro explains the game’s background story.

The ground is covered by lava. This requirement represents the
game-logic of the lava.

A basic effect to render the lava lake. A basic red rectangle is enough
for a first prototype.

A polished and nice effect to render the lava lake. This includes
advanced shaders.

If the player gets into contact with the lava he dies.

At random there are fire eruptions emerging from the lake.

If such a fire eruption hits a player he endures damage or dies. If the
eruption hits an island it throws the island off its course.

Pillars of different sizes stick out of the lava. This requirement

ReqPi02

ReqPi03

ReqPi04

ReqPi05

Basic Pillar
Rendering
Sophisticated
Pillar Rendering
Tilt Pillars

Icy Pillars

FLOATING ISLANDS

Reql01

Reql02

Reql03

Reql04

Reql05

Reql06

Reql07
Reql08
Reql09
Reql10
Reqlll

Reqll12
Reql13

Reql14

PLAYER

ReqP01
ReqP02

ReqP03

ReqP04

ReqP05

ReqP06
ReqP07

Floating Islands

Basic Island
Rendering
Sophisticated
Island Rendering
Moving Floating
Islands

Crashing Islands

Islands and Pillars

Sinking Islands
Rising Islands
Melting Islands
Destructible
Islands

Icy Islands

Power-Ups
Power-Up Re-
spawn

Island Health
Indication

Player
Basic Player
Model

Sophisticated
Player Model

Island Attraction

Island Walking
Island Jumping
Island Repulsion

represents the need to model pillars with respect to in-game logic.
There is some model representing pillars which stick out of the lava.

Realistically rendered pillars stick out of the lava.

Pillars can be tilt over by islands. The resulting fall can affect other
islands and pillars.

Pillars have a top consisting of ice, which melts to water that runs
down the pillar and drops into the lava.

Initially there is a set of floating islands of rock. The islands hover
above the lake of lava in different heights.

A basic rendering such that the islands are visible and useable inside
a game.

A polished and nice effect to render the islands.

Islands have the ability to move. They move with a given velocity.

If an island crashes into another island the collision will be resolved
according to physics. The resulting movement should be locked onto
the x/z plane the resulting rotation only respective to the y-axis.

If an island crashes into a pillar the collision will be resolved
according to physics. The resulting movement should be locked onto
the x/z plane the resulting rotation only respective to the y-axis.

If a player stands on an island it will lose height.

If the island does not carry the player it regains its original height.

If an island gets into contact with lava it melts.

If an island takes enough damage, either by a players special ability
or by falling pillars it will fall apart.

Islands hovering above a specific height are slightly or fully covered in
ice.

Power-Ups are lying on the islands.

Power-Ups re-spawn if consumed on a random island

If islands are being destroyed by heat the progress of destruction
shall be indicated by an increasing glow.

The player has to be represented within the game-logic.
A model for the player is available.

A realistic model for the player is available.

A player can use attract an island so it floats to the side of the island
the player is standing on. As soon as the island is not attracted
anymore, it hovers back to its original position.

The player can walk to an island he attracted.

A player can use the jetpack to move from one island to another.

A player can use the jetpack to emit bursts of air which will for a
short period of time get an island to drift off its original course. If it

ReqP08

ReqP09
ReqP10

ReqP11

ReqP12

ReqP13

ReqP14

ReqP15

ReqP16

ReqP17

ReqP18

ReqP19

ReqP20

ReqP21

collides with a pillar it could change its course completely.

Direct Combat 1 Every player has a melee attack ability which costs no energy. This
will deduce health from his enemy.

Direct Combat 2 A realistic attack animation is displayed.

Direct Combat 3 Melee attacks will also physically push the opponent away from the

attacker.

Energy Every player has an energy bar which is displayed in the Ul. Energy
will recharge itself with time. Every used skill will use a fixed amount
of energy.

Ice Spike The player can specify a direction in which, subsequently, a spike is

sent off. If the spike hits an enemy, he will get hurt and frozen for a
short period.
Flame Thrower The player can use a flame thrower to cause damage to another
Damage player.
Flame Thrower The player can use a flame thrower to target and destroy islands.
Island
Destruction

Building Islands If the spike hits a rising fire ball, an island will be built.

with Ice Spikes

Snow storm The player can specify a point in range, a cloud will appear and start
snowing on the creatures below it, causing damage.

Fire Wall The player can lighten up a fire on the floor which will remain there
for a fixed amount of time. Players stepping on the fire will be hurt.

Small Robot The player can spawn a robot on the current island which will be

Spawning there for a fixed amount of time and attack all enemies stepping on
the island.

Aiming Aids Visual aids for helping the player aim (during ranged combat or
islands jumping) shall be implemented to simplify controlling a
player.

Collecting Players can collect power-ups and get their respective bonuses.

Power-Ups

Slow Indication If a player has been slowed, this state shall be indicated graphically.

DEVELOPMENT SCHEDULE

The development shall be divided into consecutive layers. All of the requirements defined

under are classified and assigned to one of them. Those layers are:

1.

Prototype: The prototype serves to play test the central game-logic and contains
only the most minimal graphical features needed to represent the game state. If
any feature is removed from this part the prototype will degrade from a game into
a technical prototype.

Functional minimum: This first layer contains the set of requirements minimally
required to play the game and also some first simple visuals. The functional
minimum is the first milestone.

Low target: The low target is the second layer and also a milestone. Though it
contains more features than the bare minimum, it is still essentially not what
should be achieved during the timeframe of fourteen weeks. Still it will serve as a
good indicator if the development is still inside the timeframe laid out in this
chapter.

Desirable target: This layer and milestone is what the project aims at. It contains all
the requirements that make up a well polished and fun to play game.

5. High target: The high target contains additional features that will make it into the
final deliverable if the team has some free time to implement them. There is no
milestone defined for it. After finishing the Desirable Target it will be decided
which features of this target will make it into the gold version milestone.

6. Extras: This part of the schedule defines some additions to the game that would be
fun but are not realistic to achieve. However in a future project they could be
added.

The layers then are assigned to milestones to be reached on a specific date. Those
milestones contain a detailed timetable determining when each requirement will be
implemented and who is responsible for the implementation. This timetable shall be filled
out iteratively during the projects development.

DELIVERABLES

PROTOTYPE

ReqG01 Basic Camera

ReqG03 Basic Software Framework
Reql01 Lava Ground

Reql02 Basic Lava Effect
ReqlL04 Deadly Lava

ReqPi01 Pillars

ReqPi02 Basic Pillar Rendering
ReqlO1 Floating Islands

Reql02 Basic Island Rendering
Reql04 Moving Floating Islands
ReqP01 Player

ReqP02 Basic Player Model
ReqP06 Island Jumping

ReqP08 Direct Combat 1
ReqP10 Direct Combat 3
ReqP12 Ice Spike

Reql12 Power-Ups

ReqP20 Collecting Power-Ups

FUNCTIONAL MINIMUM

Reql05 Crashing Islands

Reql06 Islands and Pillars
ReqP09 Direct Combat 2
Reql07 Sinking Islands

Reql08 Rising Islands

ReqP13 Flame Thrower Damage
ReqP14 Flame Thrower Island Destruction
ReqP11 Energy

ReqUIO6 Simple HUD

ReqP19 Aiming Aids

ReqG05 Shadow Rendering

LOW TARGET

ID Requirement
ReqL03 Polished Lava Effect

ReqPi03 Sophisticated Pillar Rendering

Reql03 Sophisticated Island Rendering

ReqP03 Sophisticated Player Model (may be moved)

ReqUIO4 Player Selection

ReqUI0O7 Fancy HUD

Reql14 Island Health Indication

RegP21 Slow Indication

ReqP04 Island Attraction

ReqP05 Island Walking

Reql13 Power-Up Re-spawn

DESIRABLE TARGET

ID Requirement
ReqP07 Island Repulsion

ReqUIO1 Start Screen

ReqUIO5 Map Selection

HIGH TARGET
[») Requirement

ReqG04 HDR Rendering

ReqlL05 Lava Eruptions

Reql06 Harmful Fire Eruptions

ReqPi04 Tilt Pillars

ReqPi05 Icy pillars

Reql09 Melting Islands

RegP15 Building Islands with Ice Spikes

ReqUIO8 Intro

ReqG06 Statistics

ReqUIO3 Text Input

ReqUIO2 High Score

ReqG02 Advanced Camera

EXTRAS

ID . Requirement
Reql10 Destructible Islands

ReqP16 Snow Storm

ReqP17 Fire Wall

RegqP18 Small Robot Spawning

Reql1l Icy Islands

MILESTONES

ID Milestone . Description Due Date |

Mso1 Prototype With this milestone the prototype chapter must have March 16,
Chapter Written been written and added to the game notebook. 5pm

Everyone in the team should also have installed and
experimented with XNA in order to be ready for

15

MS02

MsS03

MsS04

MSO05

MS06

MS07

MSO08

Functional
Minimum
Interim Report
Written

Low Target

Desirable Target

Play test Chapter
Written

Gold Version

Conclusion and
Presentation

development.

Additionally a game prototype according to the
prototype specification has been created.

With this milestone the functional minimum must be
implemented, working and tested.

With this milestone the chapter with the interim report
must have been written and added to the game
notebook.

With this milestone the low target shall be hit.

With this milestone the team must have fulfilled the
requirements for the desirable target. The prototype
must be tested and in presentable order since it is
needed for play testing in the week after.

With this milestone the play test chapter must have
been written and added to the game notebook. This
concludes that to this date all the play testing must be
done.

With this milestone the development must have been
concluded. All testing must have been finished and
some of the high target functionality should be
implemented.

With this milestone the conclusion chapter must have
been written and added to the game notebook. In
addition the public presentation of the game must be
ready to be held.

TASK ASSIGNMENTS AND WORK ESTIMATION

March 23,
12pm
April 6,
5pm

April 13,
12pm
May 4,
12pm

May 11,
5pm

May 25,
12pm

May 29,
5pm

PROTOTYPE

ReqGO01 Basic Camera cob 2h
ReqG03 Basic Software Framework cob 8h
Reql01 Lava Ground jab 3h
Reql02 Basic Lava Effect cob 2h
Reql04 Deadly Lava jab 3h
ReqPi01 Pillars cob 3h
ReqPi02 Basic Pillar Rendering cob 2h
Reql01 Floating Islands jab 2h
Reql02 Basic Island Rendering dpk 4h
Reql04 Moving Floating Islands jab 4h
ReqP01 Player dpk 10h
ReqP02 Basic Player Model jab 4h
ReqP06 Island Jumping jab 4h
ReqP08 Direct Combat 1 jab 1h
ReqP10 Direct Combat 3 jab 2h
ReqP12 Ice Spike jab 3h
Reql1l2 Power-Ups cob 2h
ReqP20 Collecting Power-Ups cob 1h

‘FUNCTIONAL MINIMUM

Reql05 Crashing Islands cob tbd
Reql06 Islands and Pillars cob tbd
ReqP09 Direct Combat 2 jab tbd
Reql07 Sinking Islands dpk tbd
Reql08 Rising Islands dpk tbd
ReqP13 Flame Thrower Damage jab tbd
ReqP14 Flame Thrower Island Destruction cob tbd
ReqP11 Energy jab tbd
ReqUI06 Simple HUD jab tbd
ReqP19 Aiming Aids dpk 8h
LOW TARGET

ReqlL03 Polished Lava Effect dpk

ReqPi03 Sophisticated Pillar Rendering dpk

Reql03 Sophisticated Island Rendering dpk

ReqP03 Sophisticated Player Model

ReqUI04 Player Selection jab 3h
ReqUI07 Fancy HUD jab 3h
Reql14 Island Health Indication cob

ReqP21 Slow Indication cob

ReqP04 Island Attraction jab 4h
ReqP05 Island Walking jab 2h
Reql13 Power-Up Re-spawn jab 1h
None Advanced Collision Detection cob

None Gamplay testing jab 4h
DESIRABLE TARGET

ReqlL03 Polished Lava Effect dpk performance
ReqPi03 Sophisticated Pillar Rendering Dpk textures
Reql03 Sophisticated Island Rendering Dpk textures
ReqP03 Sophisticated Player Model dpk /cob

ReqUI07 (Fancy HUD) jab need graphics from designer
Reql14 (Island Health Indication) cob depends on flamethrower
ReqP21 Slow Indication Dpk In player shader
ReqP07 Island Repulsion Jab implemented in MS03
ReqUIO01 (Start Screen)

ReqUIO05 (Map Selection)

None Advanced Collision Detection Cob Performance
None Default robot in player selection Jab

None No-repeat in menu Jab

None Death indication in HUD Jab

None Flamethrower island selection? Jab

None Improved ice spike aiming + Sphere jab/dpk

None Last man standing gameplay mode Jab

None Powerup and arrow animation Dpk

None (Level preview in Menu) Jab

None Keyboard controls for player 1 Jab

None Ice spike effect (particle system) Cob

None Explosion effect (particle system) Cob

None Fire effect (particle system) Cob

I

DEVELOPMENT TIMETABLE

WEEK 11: 9.3.-15.3. WORKING TOWARDS MSO01

ReqGO01 Basic Camera cob 2
ReqG03 Basic Software cob 8
Framework
Reql01 Lava Ground jab 3
Reql02 Basic Lava Effect cob 2
ReqlL04 Deadly Lava jab 3
ReqPi01 Pillars cob 3
ReqPi02 Basic Pillar cob 2
Rendering
Reql01 FloatingIslands jab 2
Reql02 Basiclsland dpk 4
Rendering
Reql04 Moving Floating jab
Islands
ReqP01 Player dpk 4 4
ReqP02 Basic Player jab
Model
ReqP06 Island Jumping jab
ReqP08 Direct Combat1l jab 1
ReqP10 Direct Combat3 jab 2
ReqP12 Ice Spike jab
Reql1l2 Power-Ups cob
ReqP20 Collecting cob 1
Power-Ups
None Testing jab/dpk/cob
None Work Estimates jab/dpk/cob
and Plan for
MS05

WEEK 12: 16.3.-22.3. WORKING TOWARDS MS02

ReqGO01 Basic Camera cob 2
ReqG03 Basic Software cob 8
Framework
Reql01 Lava Ground jab 3
Reql02 Basic Lava Effect cob 2
Reql04 Deadly Lava jab 3
ReqPiO1 Pillars jab 3
ReqPi02 Basic Pillar cob 2
Rendering
Reql01 FloatingIslands jab 2
Reql02 Basiclsland dpk 4
Rendering
ReqP01 Player jab
ReqP02 Basic Player dpk 4 4
Model

ReqP06 Island Jumping jab
ReqP08 Direct Combat1l jab

None Testing jab/dpk/cob

None Work Estimates jab/dpk/cob 1 1
and Plan for
MSO05

WEEK 13: 23.3.-29.3. WORKING TOWARDS MS03 AND MS04

Exact schedule to be determined.

WEEK 14: 30.3.-05.4. WORKING TOWARDS MS03 AND MS04

Exact schedule to be determined.

WEEK 15: 06.4.-12.4. WORKING TOWARDS MS04

Exact schedule to be determined.

WEEK 16: 13.4.-19.4. WORKING TOWARDS MSO05

Exact schedule to be determined.

WEEK 17: 20.4.-26.4. WORKING TOWARDS MS05

Exact schedule to be determined.

WEEK 18: 27.4.-03.5. WORKING TOWARDS MS05

Exact schedule to be determined.

WEEK 19: 04.5.-10.5. WORKING TOWARDS MSO06

Exact schedule to be determined.

WEEK 20: 11.5.-17.5. WORKING TOWARDS MS07

Exact schedule to be determined.

WEEK 21: 18.5.-24.5. WORKING TOWARDS MS07

Exact schedule to be determined.

WEEK 22: 25.5.-29.5. WORKING TOWARDS MS08

Exact schedule to be determined.

ASSESSMENT

The game features various possibilities of interaction with the game world and other
players. Thus, it offers a very varied game play and diverse tactics a player can employ in
order to ingeniously defeat its opponent. On the other hand, it should still be simple
enough for everyone to learn the controls in a matter of minutes and enjoy playing.

A game world mainly consisting of lava is a challenge, but should reward us - and the player
- with a beautiful, animated environment. Additionally, there is some cool physics involved
when islands collide with each other or pillars.

We regard the game to be successful if players can make real use of the floating islands -
and the involved physics - to fight each other.

PART 2 — PROTOTYPE

This chapter describes a first software prototype of the main game mechanics and shows
our findings based on its evaluation. The prototype already incorporates the following
concepts of the final game:

e Pseudo-randomly moving islands with colliding pillar interactions.

Players who can move in the XZ plane and jump from platform to platform using a
jetpack.

e Long-range attacks of players using the ice spike skill.

e Melee attacks of players.

e Visualization aids assisting players to navigate in the 3D space using shadows.

e Power-ups which are placed on islands.

We decided to approximate all the game elements with very simple geometric primitives.
Although later islands might not have a flat surface in the final game, this simplified contact
and collision detection a lot. Their movement is based on two forces: First, they get
attracted by all the pillars whereas the force is quadratic to the distance. Second, we add a
random force in each frame to prevent them from converging at one point.

The player’'s movement is divided into two parts: using the gamepads left analog-stick he
can move in the XZ plane, while pressing A activates the jetpack allowing him to move up
the y-axis. This movement is calculated by a simple acceleration of the jetpack, which is
added to the player’s velocity vector in each time step. Gravity acceleration works against
the jetpack and keeps a player standing on an island — and (in the worst case) falling down
into the lava. If players walk into each other they receive a minor velocity-based pushback.
A stronger pushback is encountered, if one player hits another.

Shadows are realized by real-time shadow maps. At the moment, they use no interpolation
in the look-up stage which leads to very jagged artifacts at steep angles. However, the sole
purpose of a shadow implementation at this stage was to determine whether or not
shadows would serve well to support players navigating on the islands.

The ice spike implements a homing mechanism. After the spike is set off, the spike gets
slightly pulled into the direction of an enemy. However, we have an upper bound for this
force in order not to make aiming too easy.

For easier tracking of hits (either melee or through ice-spikes) appropriate sounds were
also added.

EVALUATION

We have tested the game (and will continue to do so a lot within the upcoming days) with
respect to the following criteria:

e s it easy and intuitive to move the player and perform attack actions?
e Does the core game play make fun, even after playing it for several minutes?

I

While the latter question is common and crucial for every game concept, the former one is
one raised by multiple reviewers of our original concept. By testing this point in a very early
phase, we want to react properly to the feedback we’ve got in the first stage.

GAMEPLAY SCREENSHO

Two players are standing on a moving island. Two collectable power-ups are on other islands. A player’s health, energy and
fuel level is currently shown as a text label. Later, this will be replaced by a graphical HUD.

A player is shooting a bunch of ice-spikes, although missing his enemy.

A player is using his jetpack to move to the smaller, upper island. As visible in the text on top, using the jetpack needs fuel.

POSITIONING

It is still quite tough to position yourself in the 3D environment. To make the task easier,
we added shadows to enable the player to look at the projection of the island and his robot
to more easily track his position. To control a player hidden behind an island or another
object, we will implement some feature showing his contours projected onto such an
object. This could also be combined with shadowing in a way a player gets a marker on all
islands below and above him.

The addition of shadows unfortunately leads to the problem that a player is completely in
the dark and not visible. Nevertheless, this can easily be solved by having the player emit
his own light and adding ambient lights.

Finally, we will have to do further experiments with the angle and focal length used for the
camera to reduce positioning problems.

PLAYER MOVEMENT

Currently, a player can walk off an island, which is a very unfortunate and leads to sudden
death. It would make sense to only allow the player from falling of an island if he explicitly
uses his jetpack or other means of traveling between the islands. Otherwise, He should not
be able to walk beyond the edge of the island. We will implement this behavior in a further
version.

ISLAND TRAVEL

Using free jetpack movement, it is nearly impossible to move between islands, because of
mentioned 3D positioning and tracking problems. Therefore, a more passive approach (like
selecting the island and automatic flying) should be taken. This could also have the
advantage that a player can look around and shoot spikes at his opponents while flying.
Additionally, the path on which an island moves should be visualized in the future (for
instance by small rings of dust). Therefore the path of an island will have to be fixed or at
least calculated in advanced to visualize where an island will move to some time from now.

PARAMETER TUNING

Without the need to drastically change certain implementations and aspects of the game,
one can heavily improve the experience by tuning parameters (e.g. attack damage, gravity
or jetpack acceleration). To simplify this task and in order to allow fast testing of different
parameters, we implemented a game console which shows the state of all active entities
on the screen and enables the user to directly manipulate them:

Game Control

lava kind Attribute Value:
pillarl position

pillarz scale

pillarz mesh

pillar4 jetpack _accelers
islandl player_id
islandz bv_type

island3 rotation

island4 jetpack_velocity|
islands contact_pushbac)
islandé hit_pushback _wel
island? ENErgY

playerl health

playerz fuel

pOwWeErLp frozen
powerup2 game_pad_index

[P -4607392 0

f Change Attribute

An in-game console which allows the modification of parameters and attributes of all the present entities.

PART 3 — INTERIM REPORT

This chapter describes how the game developed from an early prototype to nearly the
finished low target. It describes step by step the work that has been done and the changes
to the original planning and schedule that have been made.

WEEK 1: FUNCTIONAL MINIMUM

CHANGES

One change as been applied to the requirements fulfilled by Milestone 2. The team agreed
to delay the requirement “ReqP09 — Direct Combat 2” to the next milestone since it was
not possible to implement the attack visualization without having a player model.

ACHIEVEMENTS

Compared to the prototype, the game has matured further. The major improvements that
have been applied are in detail:

e RegP13 and RegP14: A new type of ranged weapon has been added: The flame
thrower. Using the flame thrower, it is possible to either attack the opponent or to
destroy islands. The flamethrower does not have the same range as the ice spike,
but whatever is hit by its flames sustains heavy damage.

e ReqgP12: The ice spike for which we had only a primitive implementation in the
prototype has been redefined and improved. The aiming is now easier than before.

e Reql07 and Reql08: Islands now constantly lose height while carrying a player. As
soon as a player jumps off the island it gradually regains its original height. This
feature improves the dynamics of the game by making it faster.

e Reql05: Islands can now collide with each other, allowing different islands on the
same height.

e ReqUI06: The status strings have been replaced by a first and simple HUD.

e ReqP19: Failed

PROBLEMS

The game still has several shortcomings. Some of them have been mentioned in detail in
chapter two. This is a short summary of the persisting problems:

e Navigation is not trivial

e |ce spike aiming could be better

e The game play is overloaded and needs to be streamlined
e The collision response has to be improved in certain places

THE PRODUCT

The working product features the moving islands in an already well fleshed-out form, but
without any textures. Movement between the islands is still restricted to the jetpack, while
a new gadget, the flame thrower, is available. It can be used to harm players, or islands.
The ice spike aiming has been improved, but is still lacking accuracy. Collision detection is
only done using simple collision primitives (cylinders and spheres).

WEEK 2: LOW TARGET PART 1

CHANGES

The realistic player model (ReqP03) has been moved to the desirable target, which further
delays the direct combat animation (ReqP09). Some additional requirements were
introduced, as a result of some additional play testing and findings from the prototype:
Reql14 is a new requirement for a visual indication of an island’s health (it should glow
when it gets damaged by the flame thrower). Similarly, ReqP21 is the visual indication of a
player’s frozen state (which could also be solved through the HUD). Also, ReqP04 (Island
Attraction) has been extended to also include an easy way to jump from island to island.

ACHIEVEMENTS

The game made a huge step forward in terms of visuals compared to the functional
minimum. Also, the problems of inter-island traveling have been addressed quite
successfully in the form of island jump. The collision detection is also much finer grained
compared to the simple primitives of Milestone 2. In detail, those changes are:

e Reql03: A shader for realistic Lava rendering has been written, described in-depth
in the corresponding section.

e ReqPi03: More sophisticated pillar models have been included, though they are not
textured yet.

e Reql03: Three different island models have been included.

e ReqUI04: An in-game menu has been added which will allow the selection of maps
and players.

e RegP04: Islands can be selected using the right analog stick; the closest island in
the direction the stick points at is selected and the player can attract that island by
pressing the right trigger. He can jump to that island by pressing the left trigger.

e ReqP05: A player can walk — or fly using the jetpack — to an attracted island.

e Reql13: Power-ups respawn on a random island after a random amount of time
after consumption.

PROBLEMS

Some problems still remain, such as:

e The collision response for standing on top of an island has some flaws; it can
happen that a player oscillates on top of an island or gets set on top although he
collided with the island’s border.

e Islands don’t collide with the cave at the back, nor are they stopped from leaving
the screen to the left, right or bottom.

e On island attraction, some collision response is not correct: Islands can sometimes
go through pillars.

Collision response was particularly problematic, as it can heavily depend on the frame rate:
if the frame rate drops and the time step increases, objects can fall through or collide again
after the application of collision response — and the same (maybe inappropriate) response
gets applied again. Therefore, collision response has to be fine-tuned and adapted to each
object interaction combination which will take up quite some time. This frame rate
dependence may also mean that we will have to multi-thread our engine, so draw and
update code can be run on separate cores und a low update time step can be guaranteed.

SCREENSHOTS

Bender 46.4 fps I, Robot

The current game screen including the HUD.

Bender 49.9 fps

I, Robot

The green player jumping towards the selected island.

Bender 49.1 fps

Test Level

New Game Test Level

Exit Game

The Menu overlay.

PRODUCTION EXAMPLE - COLLISION DETECTION

OVERVIEW

To implement the game code in Project Magma, some sort of collision detection between a
set of entities (namely the player, power-ups, islands and pillars) was needed. As with all
the other parts of the software, the target was to keep the collision detection pluggable
and easy to configure. As with all features, this allows for reconfiguring the collision
detection at runtime. This has the advantage that we can test different collision volumes
for different entities.

In accordance to all the other parts of the software, a new property, a collision entity, and a
collision manager was introduced. Collision entities represent a “collidable” entity within
space bounded by a collision volume. They are stored inside the collision manager which
also tests for collisions between the entities. The binding between the simulation on one
side and the collision entities and the collision manager on the other side happens inside
the collision property which is attached to an actual simulation entity that should collide
with other entities.

BROAD PHASE

Broad phase collision detection is currently not optimized. The collision manager uses the
naive approach testing each collision entity against each other entity.

COLLISION VOLUMES

Collision detection supports three different types of volumes:

e Bounding spheres

e Bounding cylinders aligned to the unit y-axis

e Triangle trees. These are trees of axis aligned bounding boxes containing triangles
inside the leaf nodes. Each leaf contains up to five triangles.

The content pipeline creates all three collision volumes for each triangle mesh. The level
designer then chooses which bounding volume is assigned to a given entity.

PRODUCTION EXAMPLE —CREATING LAVA SURFACES

FIRST APPROACH: LAVA PLANES

We would like to show an example of a graphical element which we consider to be crucial
for a credible ambience of our game. This serves both as a documentation for our own
reference and for a work report for the lab.

We started our research in lava rendering by searching the web for tutorials describing how
to create lava effects in offline rendering systems like Maya. We found
http://en.9jcg.com/comm_pages/blog content-art-94.htm to be the one with the nicest

results and implemented it first in Maya and then as a GPU effect.

1 - An overlay of several fractal textures (Stucco)
generated in Maya. Offsetting these with respect to
each other will be used for animation. 2 —The dark
parts of Stucco are replaced by a slight granite texture
generated in Maya. 3a —We add diffuse shading to
allow for normal mapping later on.

3b — Another fractal texture, generated in Maya and
luminance-amplified in the shader. 4a — The fractal
texture gets blended in and moves slowly over the plane
which simulates moving fog. 4b/5a — A normal map is
added to give the dark parts (stones) some structure.
5b/6 — Two cloud renderings, generated in Photoshop,
are used to generate a pseudo-random field of UV
vectors which are used to distort the texture coordinates.
This simulates air flickering due to the heat. 7 — A final
glow with Gaussian Blur is added.

We had to omit the displacement part for now, but we got everything else to work with
some tweaking. We added the heat flickering effect as described above by slightly
distorting the texture coordinates.

http://en.9jcg.com/comm_pages/blog_content-art-94.htm

GOING BEYOND PLANES: PARALLAX OCCLUSION MAPPING

The effect of the shader
described above looks already
quite pretty when seen from a
perspective projection like the
one in the picture to the left.

However, we had to find out
that the effect owes much of

its dramaticism to the wide-
angle perspective we’ve used during the development of the shader. As discussed in an
earlier chapter, though, our gameplay requires an almost orthographic view onto the scene
in order to maintain maximal clarity for the players navigating in the scene.

After using the camera
parameters from the game itself,
much of the effect is lost (see
right). First, the pattern appears
to be much more monotonous
than before, and suddenly we
miss the notion of depth. Since
the angle between the camera and the ground plane is relatively flat in our setting, we

thought that it would be nice to have some actual geometric structure in the lava instead of
just plain normal mapping. To find out if this would help, we took an implementation of
Parallax Occlusion Mapping and included it into our shader.

As we show on the left, we
regained a large part of the
depth of the scene we’ve lost
previously due to the
perspective change.

At this point, we started to get
more creative by altering parameters of the individual layers. We inverted, compressed or
luminance-scaled the height map, introduced new color mappings and changed the
strength of PO mapping. Soon, it became apparent that small changes in individual
parameters led to under- or oversaturation quite fast, and the need for some simple global
tone mapping arose. As we already had a post-processing stage, this was easy to
implement and it turned out that a 3" order Lagrange polynomial with interactively
modifiable parameters already does the trick. On the next two pages, we show examples of
results we achieved with different parameter sets.

An increasing issue of PO mapping became the performance. We are currently working on
emulating the same effect with several planes, alpha maps and alpha testing.

In this set, we inverted the
depth effect of PO mapping by
negatively scaling the occurring
gradient term. The Stucco map
which combines the textures
(see earlier) is still unchanged,
though.

First — low glow radius and
strength, linear tone mapping.

Second - all illuminations are
scaled up to create an
uniformly hot surface.

Third — exaggerated contrast.

Fourth — even more
exaggerated contrast. The black
ridges can be interpreted as
floating ashes.

First — the original shader, just
with Parallax Occlusion
Mapping enabled.

Second - a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — low glow radius but
relatively high contrast settings
in the post-processing stage.

Fourth — higher glow radius,
intentional oversaturation to
emphasize the perception of a
very bright light source in the
lava.

In this set, we inverted both the
Stucco texture and its gradient
afterwards. This leads to big,
bright, burning chunks on the
surface.

First — low glow radius and
strength, linear tone mapping.

Second - a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — enhanced contrast.

Fourth — extreme contrast.

In this set, we inverted the
Stucco texture which serves as
both a height map and a
blending operator between
texture layers. Afterwards, we
let the Gradient unchanged, so
the entire effect is just inverted.

First — low glow radius and
strength, linear tone mapping.

Second - a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — enhanced contrast. The
bright structures can be
interpreted as little flames
which move along the surface.

Fourth — extreme contrast. The
flame effect is exaggerated now
to indicate that the fire is really
bright.

PART 4 — ALPHA RELEASE

THE PRODUCT

The current release features all items from the desirable target. Graphics-wise those are:
Textured pillar and island models, textured cave, animated lava and a generic particle
system used for the ice spike, the flamethrower and explosions. Furthermore there is a
newly designed HUD and a menu screen. On the game play side we have moving islands,
island attraction, island repulsion, ice spikes, the flamethrower and direct combat in the
form of hits with pushback. HDR from the high target is also already implemented.

020.6 fps 20.2 avg 14.4 min 34.5 max 250.0 sps 174.3 avg sps
oo

_ GIVAYO FAMAR
L g——— P 4 . ——

'|
«4

> ™ —
i = —

ol
Z5nse -

CHANGES

Statistics (ReqG06) and high score (ReqUI02) have been moved into the high target. The
default means of moving among the island has been changed from island jump (ReqP06) to
island attraction (ReqP04). The jet pack can only be used when falling as a mean of saving
one selves and doesn’t use any more fuel, as this has been removed as a resource. Island
jumps have been restricted to certain distances. Island walking (ReqP05) has been replaced
by island jumps after attraction. Island jumps over long distances and island repulsions are
now only available through power ups. As a result of some testing, we streamlined the
controls and put all means to move between islands (jump, attraction and jet pack) on one
button — this will be evaluated further in the play testing phase. Furthermore, to improve
performance we split rendering and simulation into two different threads.

ACHIEVEMENTS

Many features have been polished since the last milestone and are now visually pleasing
and more usable. Those include:

e The lava effect (ReqL03) has been merged into the game, optimized and polished.

e Pillar and island models have been improved and textured. There are three island
styles (burnt, icy and green) with different decoration.

e Power ups and selection arrows bounce in a sinus wave, so they can be spotted
more easily

e The HUD has been completely redesigned and line with the streamlining of game
play (only two bars: health and energy, indication of jumps and island repulsions).

e We created a particle system (see production examples) which has been used for
the ice spike, and will soon be implemented in the form of explosion and burning
effects.

e The ice spike’s aiming has been improved, it is now able to avoid islands and pillars
to a certain degree to better hit its target.

e Islands which get attracted push away other islands in their path and quickly arrive
at their destination, though deceleration slowly towards it.

e The general movement of islands has been improved and hovering back to their
original path around a pillar has been implemented.

e The implementation of a multithreaded architecture (one thread for rendering,
multiple for simulation and collision detection) resulted in a large performance
boost (see production examples).

PROBLEMS

Most of the bugs should be fixed until the alpha presentation of Tuesday and the play
testing of this week. We track all existing bugs using our own Mediawiki. Our biggest
problems right now are keeping the performance around 30fps and eliminating the
jerkiness which can result from the decoupling of rendering and simulation.

PRODUCTION EXAMPLES

ENVIRONMENT

The environment now features different elements in their final version which previously
were only available as dummies:

First, we have different island models now which correspond to
different altitudes inside the cave: There are grassy islands on a
middle level, icy islands on the upper and burnt islands on the
lower level. Using pixel shaders, we added some windy grass parts
on the side of the grass islands. Also, we have new models for
pillars which feature snow on the top to indicate that they are on
a higher altitude. As for the lava, we decided to go for a variation
of the third picture in the interim report chapter. The cave can be
seen in the background as well.

2 islands next to a pillar.

All elements except the lava are shaded with a fully-functional Phong shader with individual
extensions, lit by three directional light sources. The
first light source is a warm orange from below to
simulate elements lit by the lava. This one has a very
fast decay as can be seen on the image below. The
second light is a cold blue one from above, indicating
daylight. By tuning these lights accordingly, we’ve
been contributing to the contrast between cold and
warm tones which we wanted to achieve right from
the start. The third light source, finally, is a moving
spotlight coming from behind. This emphasizes the
feeling that the actors are actually fighting in an

arena and increases the contrast in the border regions.

Three pillars in the lava inside the cave.

It will be a new high target to add a moving spot light
model to the cave wall to justify this particular light source.

HUD

We created a new version of the HUD which has a

FAMAR focus on simplicity and better visual integration into
.-‘ the whole scene. Also, we added some blinking effects
whenever damage is sustained in order to increase the

FAMAR feeling of being hurt (analogously to red tinted screens

7777‘_‘ in shooting games). When the player is frozen, his
’W name blinks in blue tones. The number of lives is
displayed as a number inside the health bar. Below the

energy bar, the current power-up details (if any) are
displayed.

The HUD is mirrored according to its position on the

The new HUD. Top: Full Health and screen — this can be seen in the full-screen picture
Energy. Middle: Damage is being above. In terms of implementation, the bars consist of
sustained at the moment. Bottom: different monochromatic components which are

Plaver is frazen. colored and combined in a pixel shader.

ANIMATIONS

We are using the XNA Animation Component Library (ACL)
from http://www.codeplex.com/animationcomponents to

animate the player characters. We had to change some parts
of the library since our models now need to be processed by
both our own processor as well as the ACL processor. As for
models, we are currently using the standard dwarf model that

is supplied with the library but we hope to get an own model

The animated dwarf character jnto our game within the next weeks. In terms of coloring the
standing on an island.

http://www.codeplex.com/animationcomponents

players, we have an alpha map on the dwarf’s texture which indicates which parts of the
model may be colorized how to what extent.

MULTITHREADING

OVERVIEW

Running Project Magma on only one of the three cores of the Xbox resulted in performance
problems during the alpha phase. The obvious optimization was to divide the game into a
rendering and a simulation thread since both used about the same amount of CPU time.

One suggested approach was not to care about synchronizing the two threads, but to just
use the simulation data as-is inside the renderer. But this approach could lead to
inconsistent frames and possibly some other more serious problems. Another possibility is
to keep the data the renderer needs in two places. On one hand the simulation still owns
the master data; on the other hand the renderer owns a copy of the data which is
periodically updated. Using this concept synchronization can be achieved with a minimal
amount of overhead.

TECHNICAL DETAILS

The technical realization of the mentioned approach is quite trivial. On the simulation side
a set of renderer-stubs are installed. The simulation always updates the data that needs to
be passed to the renderer on these stubs. These stubs record changes using change-objects
in one queue per simulation frame. After the simulation frame is done some intermediate
code passes the queue in a synchronized manner from the simulation to the renderer.
Whenever the renderer wants starts to render a new frame it checks whether it has
received new update-queues. If so, it applies the changes provided by the queues to its
copies of the simulation-data. This results in the renderer being updated in a consistent
manner with only one short point of synchronization, namely the passing of the update
queue. In addition the creation and application of the update queues is usually not a huge
performance hit since there are not that many changes due to temporal and local
coherence. The memory overhead is also quite low because the renderer does not need
that much data to be copied. Usually it only needs copies of position, rotation and scale.

The drawback of
this approach is simuaton < — R — | | | | |

Y

shown in the gegerer < | | | | | | | | | N

illustration on the
right side. It visualizes the timeline of simulation and renderer frames. On each frame-
change of the simulation (denoted with a vertical marker) some updates are passed to the
renderer. If the simulation is running on an unstable, varying frame rate the situation might
occur that the renderer has to render two consecutive frames using the same data. This
can lead to a jerky frame rate which can result in the game appearing to run at a much
lower frame rate. If, for instance, the renderer runs usually at about 30 frames per second
the resulting sequence of pictures may look like the generated by a renderer running at half

I

the speed (since some frames are really the same). We think that the solution to this
problem lies in interpolating the values delivered by the simulation. Using interpolation we
can avoid having to render the exact same frame twice, which should lead to a smooth
animation of all the objects within the game.

PARTICLES

OVERVIEW

The simulation and rendering of particles is a non-trivial problem. Especially the simulation
of many thousands of particles on a computer’s or console’s CPU is not feasible because
they are just not designed for such tasks. Thus some research was used to implement the
particle system for Project Magma. The main sources of information are:

e “Building a Million-Particle System” by Lutz Latta, published on Gamasutra in 2004:
http://www.gamasutra.com/view/feature/2122/building a millionparticle syste
m.php [1]

e “UberFlow: A GPU-Based Particle Engine” by Peter Kipfer, Mark Segal, Ridiger
Westermann, published in 2004:
http://ati.amd.com/developer/Eurographics/Kipfer04 UberFlow eghw.pdf [2]

e XNA Sample: http://creators.xna.com/en-US/sample/particle3d [3]

There is also another interesting read that is, unfortunately, of no use, since it is using the
native Xbox 360 SDK and not XNA:

e “Particle System Simulation and Rendering on the Xbox 360 GPU” by Sebastian
Sylvan, published in 2007:
http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingO
nTheXbox360GPU.pdf [4]

In general the readings discuss particle systems that are simulated on the GPU. But there
are also two different ideas on how to approach the problem.

The first one uses so called stateless particles which are used by [3]. In this approach the
programmer chooses a set of closed form functions that compute the parameters of a
particle (such as position, size, etc.) depending only on a time parameter. There are several
drawbacks: the particle cannot react to changing external forces and particles must always
be rendered using an ever changing vertex buffer which puts a lot of strain on the bus
transferring data from the CPU’s local memory to the GPU’s local memory.

The second approach which is taken by [1] and [2] are so called stateful particles. In this
approach the state of a particle is stored inside a set of textures on the GPU. The particle
simulation is then run on the GPU using a pixel shader. Using this design has the advantage
that the data resides at all time on the GPU which prevents expensive transfer operations.
On the other side there is the drawback that the GPU always simulates a number of
particles depending on the texture size. Computational cost is therefore not determined by

http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php
http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php
http://ati.amd.com/developer/Eurographics/Kipfer04_UberFlow_eghw.pdf
http://creators.xna.com/en-US/sample/particle3d
http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingOnTheXbox360GPU.pdf
http://www.ce.chalmers.se/~uffe/xjobb/ParticleSystemSimulationAndRenderingOnTheXbox360GPU.pdf

the actual number of particles simulated but by the maximum number of particles the
system allows.

Project Magma implements stateful particles.

TECHNICAL DETAILS

When using a stateful approach to

Position
. +—>
calculate a particle on the GPU the texture double |
state of a particle is stored inside e
some resource residing on the Yelocly “«—>
texture double
GPU. On modern DirectX 10 buffer
compliant hardware there is the o . . o

option to store particle data inside Ef;lrepgf“éﬂfr" ",
vertex buffers, process them using particle type (pt) ...
vertex shaders and to use the
stream out feature to write to new vertex buffers. Unfortunately the Xbox does not
support this feature. Therefore the state of particles is stored inside a set of textures: One
position texture, one velocity texture, and a set of textures storing static particle data like
its time of birth, its type, some random numbers associated to it or other data. The data is
then processed by a pixel shader which outputs new values for position and velocity. Since
a pixel shader cannot write into the same texture it is reading from the system needs to
double buffer the position and the velocity texture. The illustration on the right is copied
from the Gamasutra article and shows this

setup. There is also another illustration

showing the position texture of a particle

system.

Creating new particles is quite easy. The
systems can either track particle lifetime on
the GPU, or, like it is implemented in Project
Magma, use the texture as a ring buffer. New
particle values are then simply rendered as
single points onto their position in the texture.

Rendering is implemented using point sprites

and one static, huge vertex buffer rendering

each particle of the texture. Particle position and life are read inside the vertex shader
using the vertex textures feature of shader model three. If the particle is not alive anymore
it is offset to some off-screen location. Otherwise the shader renders it to its current
position.

Running the particle system on the Xbox GPU and an additional set of modern high end
GPU’s has shown that the system is easily able to render many thousands of particles
without noticeable impact on the performance of the game. We also experienced that
currently the most expensive operation seems to be the upload of new particles to the GPU
since this involves the modification of a vertex buffer.

I

