
Game Programming Laboratory '07

Parasite Paradise
Final Report

Daniel Wolfertshofer
Johanna Wolf



1. Introduction

The idea of this game is inspired by the PS2 game ‘Shadow of the Colossus’ where the 
player has to defeat colossal enemies by climbing onto them and stabbing their weak 
points with a dagger. The game level is not a mere static landscape anymore, but a 
moving creature with new challenges to the player.

Shadow of the Colossus

‘Parasite Paradise’, however, steps further into megalomania: The player controls a louse 
which crawls over the body of a huge moving fantasy creature. Each game level consists 
of one such victim. The louse starts off at a lower body part, a foot for example, and has to 
head for the upper parts. The goal is to reach the victim’s weak points where the louse can 
suck blood from until they have run dry. A victim will eventually fall unconscious from blood 
loss. Before the louse can move on to the next level, it takes advantage of its victim’s 
knock-out and lays some eggs. Until the breed has hatched, the louse has to protect them 
against a vicious hungry bug in an end boss fight. Finally, the player gains score points 
depending on the number of eggs hatched safely.
On its way to the top, the louse has to master some difficulties: It has to fight competing 
parasites by throwing eggs at them or making use of its claws like swords. When the 
player louse is attacked and injured itself, it weakens and eventually falls off the victim, 
which means that the level has to be started again from the beginning. When the louse 
sucks blood from a weak point, its energy is restored.
The louse has also the ability to jump, which has to be timed with care, however. Since it is 
sitting on a moving creature, a miscalculated jump can lead to a fall to the ground and a 
return to the level start. It is also not a good idea to jump when the louse is in an upside 
down position. As long as the louse is in contact with the creature surface, there is no 
danger of falling off.



Additionally, the louse has to beware of anti-lice shampoo floodings. The player has to 
anticipate the flow of the liquid and avoid it as it weakens the louse and could wash it off 
the creature’s body.
To make a different challenge of each game level, they contain special scenarios or tasks. 
For example, the victim could fly through the sky or dive under water which makes jumping 
impossible. Or the player louse has to win a race against a horde of enemy parasites and 
reach a blood-sucking spot faster. Eggs of vicious bugs could be hidden all over the level 
and have to be spotted and destroyed. The victim creature might also try actively to get rid 
of the louse by scratching itself, rolling on the ground or shaking itself.

2. Design

2.1 Assessment
The main point of 'Parasite Paradise' is the fact, that the level is moving. In contrast to a 
static landscape, the player is challenged by estimating the right time to jump depending 
on the movement of the ground he is standing on at the moment.
The game contains action, as the player has to defeat enemy parasites by throwing eggs 
at them. There are also adventure elements since the player has to search the creature for 
weak points he can suck blood from. Furthermore he has to complete tasks such as 
collecting hidden eggs or winning a race against other parasites.
The quirky game scenario provides a source of incorporating many surprise effects. 
Crawling over a huge body which is inhabited by a whole civilisation of parasites should 
give the player the chills and a unique game experience.



2.2 Technical Issues

During the game development, among others the following main techical issues will arise:

• Moving over an animated 3D model
• Collision detection
• Model animations 
• Physical behaviour of moving, jumping and throwing eggs
• Rendering of viscous liquid using smoothed particle hydrodynamics
• Rendering hair by representing each strand as a B-spline for close hair and 

approximating it by sampling particles or sparse hair guides for distant hair
• Under water effects
• Rendering cloth for the level design

2.3 Look and Feel
The graphical design of the game is not aiming for persuasive realism as for example a 
human body for a level. Rather, the characters and backgrounds are intended to have a 
fantasy or comic style touch, looking like anthropomorphic toy insects. The look shall be 
reduced and colourful, possibly using the cell shading technique. Since the game outline 
has some quirky aspects, the design should be matched to this by aiming for a mixture of 
weird and cute.



2.4 Level Design
As for the levels, they have to be restricted to a very simplified design due to technical 
issues. The surface has to be smooth and limbs should be rather short. The underlying 
mesh has to be continuous, that is, there can't be any gaps, overlappings or intersections.
There doesn't have to be much focus on the background, since the moving level occludes 
it completely or the larger part of it mostly. It is a simply textured hemisphere and flat 
ground.
To attain the illusion of the level moving forth, non-static background elements could be 
added. One possibility would be tree models which move by or leaves falling in wind 
direction.

2.5 Animation
Each level has a small set of predefined movements. Within the background, the monster 
is not actually moving around. It will be at the origin and stay there from start until end. The 
default moving will be walking, but caused by certain events, other animations can be 
triggered. It might shake its body when the flea is sucking blood for example. 
The character animations, that is the flea and the enemy parasites, consist of the 
following: walking, jumping, throwing eggs, tumbling and standing still.

2.6 Camera
Having a static camera could make the flea disappear behind the level while moving over 
its surface. Therefore it is important that the camera follows the flea in some way. Since 
the level doesn't move away from the origin we could imagine the camera moving on or 
within a single hemisphere, always a fixed distance away from the flea. As long as the flea 
is visible from some point on the hemisphere this wouldn't be so diffucult. If this doesn't 
apply - because the flea is occluded by some part of the level - the camera has to be 
forced to move to another position in the hemisphere. These transitions need to be made 
smooth, so that the view is not flipping back and forth.

2.6 Game State Overlay
The game stats will be displayed by 2D sprite overlays referred to as HUD (head-up 
display) in the following. Besides visualizing properties like health or the amount of sucked 
blood, there is an artificial horizon like those used in aircraft altimeters. This should give 
the player an indication about the flea's spacial orientation to make a decision whether it is 
a good idea to jump at the moment as the flea might cling to the level upside down and fall 
off. 
The HUD prototype occupies the upper left and right corner of the game screen. The 
design idea is that the left part indicates general physical facts important for movement 
while the part to the right displays gameplay relevant details. 
The left HUD shows an artificial horizon giving a simplified impression of the flea's roll (in 
flight navigational sense) and therefore indicates to what degree it is upside down. Around 
the artificial horizon an anemoscope or weather vane is drawn also restricted to the plane 
where the roll of the flea happens. Together they give a quick overview of the current 
situation when it comes to judging whether or not it is a good idea to jump right now. 



The right HUD shows both the flea's and the level's health status as diminishing curved 
bars. The health bars surround a simple radar view giving a 2D impression of the distance 
to the nearest opponents which are shown as dots. The middle of this radar views circle is 
the fleas position in the displayed plane.



2.7 Jumping
When the player triggers a jump he can influence the trajectory by pressing the thumbstick 
in the desired direction. While flying through the air, there is the danger that the flea will fall 
off the level. For example, the body part the player aimed to jump on has moved away 
meanwhile or the flea had been hanging upside down from the body. As the danger of 
falling down could prove as a source of frustration we are thinking of ways to giving the 
player more control over jumping if playtesting will suggest it. An idea would be to give the 
player a second chance when he succeeds at a reaction test shortly after the fall has 
occurred. 

2.8 Fighting
There are currently two ways we envision the flea to fight its opponents: Firstly, the 
opponents can shoot each other by throwing eggs. The shooting direction is fixed to the 
character's heading forward direction. The flight width of the egg can be steered however 
by pushing the trigger button at different strengths. This is only possible with the Xbox 
joypad.



2.9 Controls
2.9.1 Xbox

• Left Stick: moving, jumping direction
• Right Stick: camera
• Right Trigger: jump
• Left Trigger: shoot
• A Button: suck blood
• Right Stick (pressed): zoom in/out
• Start Button: pause

2.9.2 PC
• W/S/A/D: The louse can move forward (W) and backward (S) and turn left (A) and 

rigtht (D)
• Up/Down/Right/Left: camera
• Space: Jump 
• ALT: Shoot 
• Q: Suck blood 
• Z: zoom in
• U: zoom out
• F1: pause



3. Development

3.1 Task Breakdown

1. Functional Minimum 
• The player can move the flea (no jumping, no animation) 
• Static level with different ground properties (slippery, sticky) 
• Skybox 
• Overlays 
• Blood can be sucked from weak points 

2. Low Target 
• The camera does not lose track of the flea 
• The flea can jump 
• Throwing eggs 
• Enemies with simple AI 
• Flea / Enemy health indication and management 

3. Desirable Target 
• Collision detection 
• The level is moving 
• End-boss fights 
• Cell shading / Overall nice graphics 
• Sounds 
• The camera does not lose track of the levels movement 

4. High Target 
• Hair simulation (no interaction) 
• Different game scenarios 

5. Extras 
• Anti-lice shampoo 
• Multi-player option 
• Cloth simulation 
• Collision detection with hair 

3.2 Software Tools
• Autodesk Maya: Modelling, animation
• The Gimp: Texture editing
• Sony SoundForge: Sound
• Sony Vegas: Video editing
• TortoiseSVN: Repository



3.3 Final Project State
The functional minimum and low target have been fullfilled and part of the desirable target 
has been reached.
3.3.1 Achieved tasks

• Flea control: Moving around, jumping, shooting
• HUD: Display of the character health, the amount of sucked blood and the spacial 

position. Indication of nearby enemies.
• Camera: Follows smoothly the flea, can be controlled by the user, zoom
• 3D Models: Static skybox, eggs, animated flea, tick and bear level.
• Ground properties: the flea moves slower over sticky ground and can suck blood at 

certain spots.
• Throwing eggs and simple handling of hits on NPCs and obstacles.
• Particle sprites: Exploding eggs
• Very simple NPC AI.
• Collision detection: Bounding sphere collision detection between characters and 

eggs. Tree based hierachical collsion model for the level: currently only mesh vs. 
sphere shape is implemented. 

• Navigation map: Moving over the level surface by tracking the mesh triangle, a 
character is located on. When it crosses a triangle edge, the next triangle is 
assigned and the character's local coordinate system transformed properly such 
that it stays on the surface.

• Animation: Controller to play arbitrary keyframe ranges.
• Sound: Background track taken from the SNES game 'Earthworm Jim' and bear 

growling sound effect.





3.3.2 Technical difficulties
• Import of animated models from Maya: Our first approach was to convert the fbx file 

into an x file and use a very convenient animation library from the web, but we had 
to find out that there is no x-file export plug-in available for Maya 8. Then, we 
decided to use the skinning sample as mentioned above. This meant however, that 
we had to implement the animation controls and do the shading via the effect file. 
As we had to focus on other issues later on, we gave up on the shading effects and 
turned to texturing the models. 

• Camera: We first used a convenient camera implementation from the web, 
HMEngine, which however turned out to be partly incorrect. So we decided to throw 
it out and implemented an own camera which met our simple requirements. 

• Collision detection on an animated level: The navigation map works fine on a static 
model. The step to an animated level would only involve applying the proper 
skinning transform matrices to the vertices. Still, retrieving the correct indices from 
the vertex buffer proved to be a major obstacle and remains unsolved.



4. Conclusion
We believe our game idea was a rather a unconventional and interesting approach that 
imposed complex and challenging tasks to achieve. We had many ideas we would have 
really liked to implement, such as the hair or anti-lice shampoo simulation. Sadly our vision 
contrasts reality as we had far too less time to achieve our goals. Already the most 
fundamental element – triangle-based collision detection – turned out to be a hard to 
overcome obstacle. Being stuck with details, we had no chance to focus on the actual 
game functionality. 
While we pity very much not having been able to realize more of our ideas, we do not think 
the time we spent on the project has been wasted. We learned a lot using various tools, 
especially Maya, and most importantly had fun while developing and designing.
The course itself was quite well planned considering that it has been offered for the first 
time. There are only a few minor points where we would like to suggest a reconsideration 
of the course schedule:
First of all we think one of the very first lessons/labs should be an in-depth tutorial on how 
to deal with XNA specific issues most notable the content pipeline. In our opinion the 
content pipeline is one of the things most teams had problems with. A tutorial on how to 
import custom content and model details could help a lot.
Another thing that might be worth considering is whether some assignments could result in 
a less formal presentation. For example instead of having each group present their 
personal feelings about XNA why not have them just sit together and chat about it. We 
could imagine that this might produce more usable insights than a more formal talk.
In general it might be a good idea to use some time of the lessons/labs to just chat about 
common arising problems between all course participants. While one often meets other 
groups in the computer rooms the oportunity to have all together seems natural to exploit 
in this way.


