
P a g e | 1

Game Programming Laboratory --- 251-257-00L

Final Report

Jens Puwein

Pascal Rota

22.06.2007

P a g e | 2

Table of Contents
Table of Contents .. 2

Table of Figures ... 3

Introduction ... 4

In game Images.. 4

Design .. 5

Initial Idea/Project Proposal .. 5

Game Description .. 5

Detail ... 5

Game Modes ... 5

The Track ... 5

The vehicles ... 6

Weapons, Nitro and Energy .. 6

Collisions .. 6

Rigid Body Engine .. 6

Graphics ... 6

Sound ... 6

Mockups .. 7

The development of the game design ... 8

Development ... 9

From the initial idea to the game .. 9

Interim Report I -15.04.2007 ... 9

Interim Report II -23.04.2007 .. 11

Interim Report II -30.04.2007 .. 12

Interim Report III -13.05.2007 ... 14

Final Report ... 16

Development tools .. 18

Playtesting ... 19

The setup ... 19

The Feedback ... 19

Conclusion ... 19

P a g e | 3

Table of Figures
Figure 1: A scene from WipeEout .. 7

Figure 2: Illustration of the idea about alternative routes: ... 7

Figure 3: Change of gravity .. 8

Figure 4: The energy shot .. 8

Figure 5: The missile .. 8

Figure 6: Own physics engine .. 10

Figure 7: Bullet physics engine .. 10

Figure 8: Cel shading tests ... 10

Figure 9: Track, first try ... 11

Figure 10: Track0 - first version ... 12

Figure 11: Debug mode for the engine ... 12

Figure 12: Menu .. 13

Figure 13: The HUD and shadow map tests. The “12” at the lower left corner is debug information . 13

Figure 14: Shadow Map ... 14

Figure 15: Split Screen ... 15

Figure 16: Our Particle emitter .. 16

Figure 17: Track1 and Track2 .. 17

Figure 18: Track1 ... 17

Figure 19: Thrusters w/o and w/ Bloom effect ... 17

Figure 20: Track2 in its glory.. 18

file:///C:\Dokumente%20und%20Einstellungen\Eraser\Desktop\Game%20Programming%20Laboratory.docx%23_Toc169241499
file:///C:\Dokumente%20und%20Einstellungen\Eraser\Desktop\Game%20Programming%20Laboratory.docx%23_Toc169241500
file:///C:\Dokumente%20und%20Einstellungen\Eraser\Desktop\Game%20Programming%20Laboratory.docx%23_Toc169241502
file:///C:\Dokumente%20und%20Einstellungen\Eraser\Desktop\Game%20Programming%20Laboratory.docx%23_Toc169241503
file:///C:\Dokumente%20und%20Einstellungen\Eraser\Desktop\Game%20Programming%20Laboratory.docx%23_Toc169241508

P a g e | 4

Introduction
SpeedThugs is a futuristic high speed racing game. The player drives a hovercraft vehicle on a track

that is located somewhere in outer space and tries to finish the track as fast as possible. Two tracks

can be chosen. One has a simple oval shape, the other includes loopings, twists and bumps.

Slowdown areas beneath the track boundaries make the vehicle slower. Therefore it is wise to stay

on the inner area of the track. Walls at both sides make sure the vehicle stays on the track and

doesn't get lost in space.

The controlling system is simple and adapted from most existing racing games. Besides brakes and

acceleration the only thing that is needed is nitro. Nitro allows to drive and accelerate much faster. It

is depleted when it is used but it is refilled every new lap.

The game modes featured are “Time Attack”, where you race against the clock, and “Two Player”,

where you race against another human player in a split screen. A highscore system tracks the fastest

laps and motivates further time improvements.

The main focus of the game is on speed. To give the player the impression of driving very fast motion

blur and tunnel vision are used. The second track has a shape similar to a roller coaster. Together

with the high speed this should be a fun ride.

In game Images

P a g e | 5

Design

Initial Idea/Project Proposal

Game Description

SpeedThugs is a high-speed racing game with hovercraft-like vehicles. As an exemplary game you

might think of the WipEout series, the F-Zero series or the Extreme-G series, but only in the wide

sense.

Detail

Game Modes

The goal of the game is to finish the track as fast as possible or crossing the finish line in first place,

depending on the game mode. If you play in the time attack mode, you have to finish the track as fast

as possible without exceeding a certain time limit. Single player race lets you drive against computer

guided enemy vehicles and in the two player mode you can race against your friends. The possibility

to tune vehicles in terms of their properties would be even more fun. Good results in the time attack

mode let you unlock better vehicles, giving you the chance to master harder time attack challenges

and again get a better vehicle...

The Track

We intend to make one track with curves, jumps and possibly movable obstacle. The track should be

a challenge, including shortcuts and alternative ways, where shortcuts are harder to make than the

normal route or may only be reached by using a nitro boost. Power ups are placed regularly and

sometimes there will be power ups which are hard to reach but worth the effort. Gravity fields along

the track force you to adapt your driving style. Not making a jump to the other side results in a reset

of the vehicle on the track, which will cost time. Imagine the track looking like a roller coaster.

Background details around the track could be added.

P a g e | 6

The vehicles

We intend to have two different hovercraft vehicles, each with different properties (e.g.

Acceleration, handling etc.). They should behave physically correct and have typical features like

nitro boosts, rocket launchers, energy guns, mines etc., each one allowing you to either drive faster

than your opponents or to slow your opponents down. Of course there is only a limited amount of

each special feature, but you may collect power ups during the race to refill ammo and nitro. The

vehicles have a limited energy shield. If you take damage, the shield is reduced. An empty shield will

result in a reset of the vehicle and therefore cost time. Power ups to refill shield may be collected.

Weapons, Nitro and Energy

Initially the vehicle has no nitro and no weapons, but it has a full energy shield. Everything can be

refilled by collecting power ups. Using a nitro boost results in higher acceleration and higher

maximum speed. The boost only lasts a limited time. Energy gun shots look like pulsing, light emitting

balls. They do medium damage and are also available as a multi shot version, where three shots are

fired at once into three different directions. Rockets have a homing ability and they avoid collisions

with the track boundaries and obstacles, tracking down the next enemy vehicle. Mines are placed

behind the vehicle and they explode when a vehicle drives over them, damaging that vehicle.

Collisions

Collision detection is performed between the different vehicles, obstacles and the track itself.

Collisions may result in damage to the vehicle or in a slow down. If you get too close to the boundary

of the track, you will be slowed down. If you hit an obstacle, the boundary of the track or another

vehicle, you will take damage and be slowed down.

Rigid Body Engine

A good Rigid Body engine should allow us to place movable obstacles and jumps along the track.

Hitting objects is fun and therefore should not always be penalized with damage or a slow down.

Varying the gravity at different places along the track should look cool and make the track more

challenging since players have to adapt to alternating environments. Imagine for example regions of

low gravity and regions where the direction of gravity changes and therefore you will be dragged

towards the track boundary or you even drive “upside down”.

Graphics

The game comes in a cel shading look, giving it a futuristic arcade look. Additional shaders may

support effects like motion blur at high speeds and other effects for explosions and weapons.

Especially motion blur helps to make the player “feel” the speed. The camera will be set behind the

vehicle.

Sound

Sound effects are supposed to add to the experience as they demonstrate the power of a rocket or a

nitro boost, for example. Varying style and speed of the background music gives a better feeling of

the current situation, for example when enemies are close or time is running out.

P a g e | 7

Mockups

Figure 1: A scene from WipeEout

Figure 2: Illustration of the idea about alternative routes:

P a g e | 8

Figure 3: Change of gravity

The development of the game design
To find the presented idea for our game we started to brainstorm, looking for a game idea that

would be realizable and fun. We oriented ourselves at existing games. The initial idea was inspired by

existing games like F-Zero, Extreme-G and WipEout. We decided to create something similar and to

extend it with new ideas. This is where the jumps and gravity fields along the track come into play.

We thought that this might add a lot to the excitement. Of course we wanted to also include

weapons since shooting your opponents is always fun. Unfortunately we couldn't stick to our

proposal and exactly these components were not included in the game. More details can be found in

the following sections.

Figure 4: The energy shot

Figure 5: The missile

P a g e | 9

Development

From the initial idea to the game
We separated the work more or less into the graphics part and the gameplay/logic part. Pascal did

most of the latter and Jens most of the former. In the following we describe how the game was

created step by step, in chronologic order. For each step a short description including the technical

difficulties that we faced is given. The descriptions are adapted from our interim reports, therefore

they demonstrate well what problems we had at the given time.

We started implementing the Physics, made ourselfs familiar with HLSL and implemented a cel-

shading shader. We also started to get familiar with different modeling tools to model the track:

Interim Report I -15.04.2007
Physics Engine – Pascal

The Physics Engine was quite a challenge. First we searched the internet for physics libraries and we

found lots of them. To name some: Ageia PhysX, ODE, Bullet Physics Library and lots of other stuff.

The problem with those libraries was that none of them was designed for C# or even for languages

without pointer arithmetic or other low level optimizations. So we decided to build our own physics

engine supporting the features we need.

Later on we needed an LCP Solver for resting contacts and we found one in a library called “Simpack”

(Details can be found at simulator.wordpress.com or sourceforge.net/projects/simpack). An LCP

Solver in Java, let’s port it to C#!

Our decision was not optimal, because porting was not as easy as thought and the differences

between Java and C# are big. Mainly the differences in the class inheritance structure and the deep

nesting of the “Simpack” library gave me some headaches and sleepless nights.

While porting was reaching an end and some feature were already implemented (rigid body motion,

collision detection and resting contacts (nearly finished)) our assistant informed us about a project

called XNADev.Ru where the “Bullet Physics Library” was ported to XNA. Well, I spent some hours for

nothing and ended up with a library, which is after testing it, good suited for us.

At the moment I am working on the vehicle physics and a demo of it will be hopefully be shown on

Tuesday.

http://simulator.wordpress.com/
http://sourceforge.net/projects/simpack

P a g e | 10

Cel Shading – Jens

Cel shading was not as difficult to implement as we thought. Getting started took some time, though.

To quantize the lighting we did not directly use the factors obtained from the diffuse and the

specular lighting as scaling factors. We used it as a texture coordinate to a 1D grey value texture

instead. This works fine if there is no color interpolation between vertices. Otherwise the color has to

be quantized as well, which is not implemented yet (in fact we tried to quantize the different color

channels separately, but that didn't look good).

The black lines at the object boundaries are achieved by rendering the whole scene a second time,

only rendering backfacing faces, moving the vertices along their normal and using black color.

The fine tuning of the shader has to be done at a later stage when we have the models etc ready.

Things like different orientations of the triangles, shading coefficients etc have to be set.

Cel shading experiments:

Figure 8: Cel shading tests

Figure 6: Own physics engine

Figure 7: Bullet physics engine

P a g e | 11

Track – Jens

Designing and modeling a track has turned out to be much more difficult than initially assumed. We

started using Blender, but we are not sure if we really want to stick with it or change to Maya (if

there are no bad surprises, it should be possible to export the models made so far...). Orientation of

faces (CW/CCW) have to be made consistent.

Making straight lines is easy of course, just stitching base elements together. Designing curves and

twists is what's on the schedule now... Once a prototype is ready, the design of the final track can

begin (using pen and paper first, using elements we know we can model and integrate).

Figure 9: Track, first try

Creating/finding a good, general purpose rigid body engine turned out to be much harder than

expected. Therefore we decided to use a pseudo physics engine, custom tailored for our game. We

decided to use Maya as a modeling tool and finished a first, simple oval track which is still used in the

final game (track0, aka Teapot Valley).

A HUD was created for later use:

Interim Report II -23.04.2007
Physics Engine – Pascal

It turned out that the “Bullet Physics Engine” port to C# is not as usable as expected. The main

drawback is that on the Xbox 360 it can sustain only about 10 moving colliding objects without

dropping the frame rate under 30.

Therefore we decided to begin a new game engine, which is not based on rigid body physics or on

real world physics. It will be a pseudo physical engine completely tailored to our game and

supporting different gravity directions and possibly also jumps.

P a g e | 12

Track – Pascal/Jens

A first, very simple track model was finished by Jens and it will be implemented into the game during

following week.

Figure 10: Track0 - first version

HUD – Jens

We implemented a HUD which shows an energy bar for shield and nitro, the time for the current lap,

the available/selected weapons and the speed.

Further improvements to the physics engine were made. Additionally we created a meaningful class

structure. The shader was extended to cast shadows using a shadow map technique and to support

motion blur and tunnel vision. We finished a pre-alpha release and started creating particle effects:

Interim Report II -30.04.2007
Pseudo Physics Engine – Pascal

The new game engine is going well. It is now possible to race on a track which has different gravity

direction, but it still needs a bit of tuning.

Figure 11: Debug mode for the engine

P a g e | 13

Game Foundation – Pascal

I implemented some game foundation, e.g. class structure for different game modes and also a

vehicle and track selection screen. Nothing interesting, but someone has to do it.

Shaders – Jens

To cast shadows we use a shadow map technique. At the moment a point light source is moving

along with the car to simulate the shadow of directional lighting. This has the drawback that also the

track boundary may cast a shadow if it is inside the light region. We intend to place point light

sources along the track. It is also possible to cast lights with texture, i.e. for example a light that

projects “START” onto the track and the vehicles.

The motion blur/tunnel vision effect is pretty simple. To achieve motion blur we simply display a

weighted sum of the previous frames and the current frame. Tunnel vision is simulated by darkening

pixels far from the image center. Parameters are passed to the shader to control the amount of

blurring and tunnel vision.

Figure 13: The HUD and shadow map tests. The “12” at the
lower left corner is debug information

Figure 12: Menu

P a g e | 14

Figure 14: Shadow Map

Particle Effects – Jens

Getting started.

Pre-Alpha Release – Pascal / Jens

Over the weekend we combined our work resulting in a pre-Alpha release. We could play one track,

which has two checkpoints where time is stopped. So we did some race against the clock and Jens

won.

What is a game without sound? We added music as well as sound effects. Split screen and an

additional track had to be done. On the graphics side we continued with the particle effects and some

problems concerning the shader kept us busy:

Interim Report III -13.05.2007
Sound – Pascal

I was browsing around the web and stumbled over the “Racing Game” example on the XNA Creators

Club web page. Good for us, there is some racing sound with the packing, which we included in our

game.

To include sound in our game, I used the “Microsoft Cross-Platform Audio Creation Tool (XACT)” as

explained in the tutorial. The only problem here was that XACT doesn’t work on Windows Vista. No

problem, I simply took my old XP.

For the engine I found an F/A 18 engine sound, sampled it, and modified the pitch etc. with Audacity.

Then I included it in XACT, included some “RPC Presets” which are bound to a variable called “Speed”

and now it is possible to control the pitch and volume of the jet sound during game play.

P a g e | 15

Split screen – Pascal

Split screen was not a real issue only something that has to be done. To avoid too much code

duplication some classes had to be split up and some new ones had to be created. Nothing exiting at

all.

Car-car collision works as expected. We used the XNA Sphere Bounding Boxes to achieve this in a

simple and efficient manner. The collision is physically like an inelastic impact.

Figure 15: Split Screen

Particle Effects – Jens

I just followed the tutorial that was posted on the twiki (http://jsedlak.org/node/177) and adapted it

to our needs. Right now we use our particle emitter to produce smoke.

Unfortunately we had/have some performance issues. After several experiments we came to the

conclusion that the pixel fillrate might be the problem since drawing e.g. 2000 sprites of 96x96 pixels

means a lot of pixels (~100*100*2000*20 (frames) = 400 Megapixel...) and reducing the sprite size

increased the performance. But once we reduced the size of the sprites we got performance

problems with the managing of the particles (updates etc). So we thought we could handle the

particles on the GPU. After a while we came up with a suboptimal solution: one texture for the

particles positions and one for their velocities (e.g. 300*300 pixels). In a pseudo drawing pass where

we render a quad that occludes the whole screen (and therefore all pixels in the pixel stage are

accessed) we update the positions and velocities. To render the particles, we pass the appropriate

number of points to the graphics card (e.g. 90'000) and read their positions by fetching the positions

texture in the vertex stage (this is a shader 4.0 feature, supported by the Xbox). This is done by

assigning each point a unique texture coordinate referencing one pixel in the positions texture.

http://jsedlak.org/node/177

P a g e | 16

Unfortunately this didn't work completely since some artifacts remained that we were not able to

resolve.

There has to be an easier, more elegant way to do the particle handling on the GPU but we could not

find it in a short time. But since the results we get with the CPU look allright we will probably stick

with the CPU implementation.

We will probably use more particle effects if our schedule allows it (e.g. fire like effects etc).

Figure 16: Our Particle emitter

Shader debugging – Pascal/Jens

We had some problems with the rendering. It turned out that one of the problems was the

orientation of the faces (clockwise vs. counterclockwise) which is not chosen in the same way by

different exports from different programs. A problem which remained is the following: if we use

*.fbx files which include materials then those parts of the mesh using materials and no textures are

rendered black if we use our custom shader.

Track

Now that we know that we are able to drive the vehicle on non-horizontal tracks we may start

modeling a more sophisticated, probably final track. It should be about ten times as big as our

current track (which has a simple, oval form) and take between 90 and 120 seconds to complete a

lap. We are not sure yet whether we will include jumps/are able to include jumps.

Final Report
Since we had problems using the second track, track2, with our pseudo physics engine we modeled

another track, track1 aka Asteroid Field, which suited our engine. Background details and textures

were added to the first, oval track. In a later stage also the new track was extended with background

details and textures. In both cases we used a skybox textured with images taken from outer space as

background.

P a g e | 17

Figure 17: Track1 and Track2

Figure 18: Track1

To make the vehicle nicer we added thrusters. The first version didn't look good in the game. In a

second version a bloom effect was used to demonstrate the high light intensity of the thrusters. This

was realized as a new shader.

Figure 19: Thrusters w/o and w/ Bloom effect

To enhance the overall look of the game some menus were redone and a loading screen explaining

the control system was added.

Much time was spent in a desperate attempt to make the huge track2 work, but we couldn't do it

during the time that was left.

P a g e | 18

Figure 20: Track2 in its glory

Unfortunately this wasn't the only thing that had to be skipped. Weapons and AI for computer

guided enemy vehicles didn't make their way into the game. Basically we underestimated the time

and effort. Problems that we didn't expect came up and some bugs were hard to find. The modeling

was harder than expected. Transforming the ideas in your head into a 3D model is quite difficult and

texturing it can be very time consuming since there is a lot of fine tuning going on if you want to

avoid visible seams and the like.

Some bugs that were very hard to trace and eliminate arised on the shader's side. Sometimes it is

enough to slightly change the order or parameters of certain functions and your graphics will be

totally messed up. There were also some XNA specific problems that we had to overcome.

A very big drawback was the physics engine. Trying many different things (full rigid body physics, 3rd

party physics library and finally our pseudo physics engine) until you got a working engine is very,

very time consuming.

After all we think that we could have included all the features if our development process would

have run more smoothly and without the just mentioned problems, except for the additional

features that would have needed a sophisticated, more general purpose rigid body engine. We

"wasted" a lot of time with things that didn't make it into the game, but we gained some useful

experience for other projects.

Development tools
For the modeling we preferred Maya over Blender. Maya was basically used for all modeling tasks. It

needs some time to get used to it but it offers much functionality and we think that we only

scratched the surface. Knowing this tool better would certainly have made our lives easier.

Other tools we used are XACT and Audacity for the sound, GIMP, MS Paint and Paint.net for textures

and of course well known office products and their also well known alternative office suite for our

presentations.

To handle different versions of the game, exchange and merge code and content we used CVS.

P a g e | 19

Playtesting
We had four people testing an alpha version of our game, two casual gamers and two experienced

gamers. One of the experienced gamers is a car fan and likes racing games. The game supported the

first, simple track, track0, and a buggy version of the second track, track1. Time attack mode and two

player mode could be played.

The setup
All testers played on an xbox360 which was connected to a Dolby Digital 5.1 surround sound system.

Two of them played on an older Pal TV and the other two played on an HDTV. We offered them food

and drinks, not to bribe them but to show them our gratitude and make them feel welcome. The

casual gamers tested alone. Therefore they only played the single player version. The other two

gamers tested together on the same device. They played single and two player mode.

The Feedback
Since we didn't want to ask suggestive questions we let the testers more or less talk freely and tell us

what was on their mind. We asked them to tell us what they liked and what they didn't. At the end

we asked them what they would add to the game and what they would change to make it better.

On the positive side the game idea and the simplicity of the game were mentioned. The testers could

play it right away, no explanations were needed and the learning phase was quite short. They liked

the feeling of the speed.

On the negative side the bugs dominated. The steering had to be fixed, the camera controls were not

working as they should have and the shadow map was not working properly on track1. Not everyone

liked the skybox in track0.

The biggest list was the one containing suggestions for possible improvements. Things that were

mentioned which we already had planned to integrate were: AI (computer guided enemies),

weapons, textures, ranking in two player mode, more vehicles (looks and physics). But our testers

also brought up some ideas we didn't think of: a minimap showing the players position on the track,

a pit stop to refill attributes like nitro, other recharge areas and speed bumpers on the track to

increase speed. The racing game fan would have liked curves that he could anticipate more, s.t. he

could prepare himself and s.t. he would not have to rely solely on his reactions. To achieve that he

suggested for example landmarks.

The feedback was much as we expected it to be, not because we asked suggestive questions, but it

was obvious that some things were missing or didn't work.

Conclusion
Since this was our first game of this scale we had some difficulties estimating the time needed to

complete the different tasks. If we create another game in the future we will probably identify time

consuming and difficult tasks more easily and plan the development process in more detail (e.g.

engine, graphics).

P a g e | 20

Overall we are quite happy with the results even though we think it's a pity we didn't include

weapons and AI. This would have added a lot to the excitement of playing the game.

The course was a good experience. Implementing different techniques and seeing it all come

together was nice. However this is also the part where we have some suggestions for improvements

of the course. It would be very nice to see examples of successful, large scale games and what tricks

are used to make them stand out. For example it would be interesting to see how a highly detailed

3D model is created, what its complexity is and how they made it look so nice even though the model

complexity is maybe not as high as one might think. Another example would be some amazing

looking graphical effects or stable game engines with good AI and physics.

We don't know whether it is possible to get such information, but we think that many tricks and

creative ideas are used in games to make them better. Of course we should come up with our own

ideas, but examples might give us some impulses and maybe let us do more in the same amount of

time.

Having XNA tutorials is a nice idea. But since some tutorials were given only after several weeks we

basically didn't need them anymore. Maybe it would be a good idea to split the tutorials and have

the different group members visit different tutorials at the same time. Or hand out some tutorials at

the beginning of the course. It would also be nice if the tutorials contained some sample code, for

example a shader example and how it is used within the XNA framework.

Many tutorials could be found on the internet. Therefore this wasn't a big drawback.

We don't think that the course schedule was too compressed. 10 credit points is a lot and therefore

it is clear that some work has to be done. If the development schedule is realistic and not too many

unexpected problems occur, 14 weeks allow you to do quite much. The goals shouldn't be set too

high. It is useful to have some time left at the end to tune and enhance the game visually and

gameplay wise without having to add more gameplay logic like additional modes etc.

All told we learned a lot and would probably take the course again.

