
Interim Report

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Table of Content 2

Current State 3
XNA tryouts, getting started with the environment 3
Exploring possibilities for production pipeline 3
Preliminary tests for concatenation functionality 3
Graphics data Classes 3
Basic blocks, player sphere, simple doom 4
Track data structure / class 4
Initial texture mapping 4
Texture drawing 4
Physics 4
Bounding geometry 5
Terrain 5
Simple track pieces (turns, up, down, hole) 5
Coin model + texture 5
Tower block modeling + texturing 6
Environment cylinder 6
Slightly improved doom 6
Sound 6
Particle system 7

Visual Impressions 8
Startscreen 8
Track, Gap & Tower 8
Environment 9
Monster Ball 9
The approaching Doom 10

Tasklist updated 11

2

Table of Content

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

The time schedule presented earlier in the lecture states that we are in a rather good timing

situation. We added all content from functional minimum and the minimum target is imple-

mented and running. Right now we are deep into desired target and we are all looking forward

to see the finished game.

But we had to find out that we do have some problems with the garbage collector, as we are

creating too much overhead. We’re now profiling the game and reducing overhead as much

as possible.

XNA tryouts, getting started with the environment
Using XNA requires some sort of knowledge of the environment, so we spent some time fa-

miliarizing with its structure and creating simple tests to see how the basic stuff works, mainly

importing and drawing geometry and input handling.

Exploring possibilities for production pipeline
Before starting with the production of game assets it is wise to define clearly the production

pipeline. With the help of the previous task we identified the .FBX as our format of choice to

export geometry from 3D Studio to XNA. Various tests helped us pinpoint all the details like

unit scaling and animation exporting.

Preliminary tests for concatenation functionality
A fundamental functionality of our game is the concatenation of single track pieces, so we

tested it very early, and it turned out to be a good thing, since the recovery of specific points

inside the imported meshes (marked by non-rendered cubes strategically disposed around

the main mesh) wasn’t exactly straightforward.

Graphics data Classes
The data of the imported meshes is stored with a dedicated class (LunModelData) that holds

a single copy of the base data of each different mesh: this ensures that the data is loaded into

memory only once. The actual models in the game are instances of another class (LunModel)

3

Current State

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

each representing a different one (each with its own transformations and positioning) and a

referencing the base data. We also implemented a library class that handles the loading and

the instantiation.

Basic blocks, player sphere, simple doom
With the class framework in place we produced the very basic 3D assets: a straight wall piece,

the player’s sphere and a simple plane representing the doom, to use during the implemen-

tation of the functional minimum.

Track data structure / class
The track of a game level needed a container class to hold it and to perform the needed ope-

rations on it once it has been created, as the repositioning of each track piece ()that needs to

be put exactly after the previous one).

Initial texture mapping
The basic models got an UV texture mapping and got re-exported to the game.

Texture drawing
The natural progression after the texture mapping was the actual texture drawing, done in

Photoshop, using free textures and pictures available online.

Physics
We decided very early to use an existing physics engine, knowing that this is quite a task –

especially as we’re using quite complex terrain and track shapes. We’re using “JigLibX” a C#

port of the JigLib physics engine. It’s open-source and suits our needs quite well as it allows

for vertex-based collision faces as well as primitive based collision faces.

4

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Bounding geometry
To increase the performance of the physics engine we decided to embed an invisible, simpli-

fied mesh inside each track piece to act like its “physical body” to the ends of collision detec-

tion; this simplified mesh allows us to reduce by quite a bit the number of collision checks. A

secondary effect of this approach is that we can easily flag the surfaces on which the player is

able to jump. And we can have different behviour for wall and runway collisions.

Terrain
Starting from a demo (http://www.dhpoware.com/demos/xnaTerrainNormalMapping.html) of

random generated terrain with normal mapping. We adapted the created height map to the

Shape of the track. And tile the created maps along the running direction.

It works quite well so far, but needs some improvements. For one we need to make sure the

tiles fit perfectly together. The connection edges already adapt to the previous tile, but there

are still some misplacing due to the fact, that the tile has an multiple of an integer size, while

the track ends at arbitrary points.

Next we will make sure the generated terrain blends nicely with the background terrain so the

feeling of being in a rather unlimited world should improve.

Simple track pieces (turns, up, down, hole)
After the basic ones it was time to add some simple track pieces, like turns to the left, right,

up and down, as well as a straight piece with a hole on it. It wasn’t that hard since the straight

piece was designed to be easily deformed afterwards.

Coin model + texture
While the functionality for coins and the relative modifiers was being implemented we needed

to introduce also a proper model to represent them. It’s quite simple, just a large, flat cylinder

with a square hole in the middle.

5

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Tower block modeling + texturing
The first of the more complex track pieces was the tower, which also marks the beginning of

a new difficulty level inside the game. It was not possible to recycle existing geometry in this

case, so it took a bit more time to create it.

Environment cylinder
We started generating the environment surrounding the track by adding a huge cylinder around

the camera of each player that sits on the distance and shows a mountain panorama.

Slightly improved doom
The original doom representation didn’t cut it anymore, so we decided to refine it: from a small

flat plane to a huge flat plane :D . No, actually we also prepared a more suitable texture, but

there wasn’t much time left before the interim presentation so we decided to stick with that,

also because the implementation of a better looking doom requires the completion of one of

the next steps.

Sound
When we sat together and discussed what makes a game playable and what are the coolest

features in other games which we should not miss to implement ourselves. One of the first

things that came in mind, were the many different radio stations in GTA. There the background

music really makes a cool gadget. We decided to try to implement something similar or at

least in the same kind. Right now we do have two different music tracks, a CD full of Chinese

children singing Chinese songs, which fits the location of our game and is a rather relaxed

background music. For more energy driven background music we found the soundtrack of an

old game called Jets‘N‘Guns which is performed by a band called “Machinae Supremacy”.

Pity we had some performance issues at first. Which was rather quickly solved. It was mainly

a bug in the “MediaPlayer”. This device is not fully integrated in Windows7.

6

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Particle system
To add an initial bit of eye-candy we implemented a simple particle system, which spawns

billboards with a semi-transparent texture on it. We implemented it keeping in mind the gui-

delines shown in class, so there is really only one instance of the particle, referenced n times

by the handler. The basic functionality was then extended with particle lifetime, rotation and

scaling, to add a bit of variety. In the game the only current use is the puff of dust when the

player hits a wall, but it will be used extensively in the future.

7

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Startscreen

Track, Gap & Tower

8

Visual Impressions

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

Environment

Monster Ball

9

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

The approaching Doom

10

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

 Functional
Minimum

Low Target Desirable Target High Target Extra

Gameplay - Run over Wall

- Jump over Holes

- Approaching
Doom

- Complex Track

- Multiplayer (2)

- Simple Powerups

- Visible Doom

- "Lunscreen"

- Complex Powerups

- Destructible Track
(predefined)

- Complex Doom with
Near-Death FX

- Damage

- Character Development
(Speed, Control,
Acceleration, Jump)

- Intro Sequenz

- Save Progress/Highscore

- Multiplayer (4)

- Dynamic Fractures

- Visualize Damage

- Global Ranklist

- Post to Facebook

- Different Shapes of
Characters

- Credits

- Pause Game

- 3D Mode

- AI-Enemy

- Different
Settings/Places

- Story Mode

- Human
charactera

Playmodes - Lun! - Lun togheter - As far as possible

- Ride the doom

- Coin Collecter

Graphics - Basic Wall

- Player (Sphere)

- Simple Shaders
(BM,..)

- Particle FX (Smoke,
Fire)

- Complex Shaders

- Motion-Blur

- Heat-Distortion

- Powerups change
Player/Environment

- Floating Stuff in the air
(e.g. Ash Particles)

- HDR-Glow

- Bloom

- Lensflare

Physics - none - Friction for Player

- "Sliding"

- Physics Engine

- Different Ground
Structures

- Simple Obstacles

- Destructible
Wall/Player

- Debris Collision

Environment - Basic
Backgroundsphere

- Fitting
Backgroundimage

- Parallaxscrolling

- Generated Terrain

- Changing Background
(Trees on fire)

Sound - none - Backgroundmusic

- Simple FX

- Matching Effects

- Select different Styles

- Progressive Sound

- Surround

Powerups - none Completely
Rescheduled:

- Blind

- Monster Ball

- Inverse Steering

- Inverse Look

- Jump

- Mirror

- Strobe

-Teleport

- Mini Doom

Done Newly Scheduled and done In Progress Removed

11

Tasklist updated

Gamelab 2010 - Alessandro Gaia - Philipp Simmler - Rafael Hostettler

 Functional
Minimum

Low Target Desirable Target High Target Extra

Options - none - Single/Multiplayer

- Volume

- Playmodes

- Difficulty

- Customize Controller

Achievements - none - none - yes - more! - awesome.

Menu - start - functional - animated - awesome.

HUD - Distance Run
(Numbers)

- Distance to
Doom

- Runtime

- Graphs

- Powerupstack

- Fixed to Player

- Animated Stack

 - Customize

Multiplayer - none - The farer you get - Interaction through
Powerups

- Same Track - Online
Multiplayer

Leveling - none - none - Simple Basic Features - Unlock "weapons"

Misc - none - none - none - Contract with Blackrock
or Disney ;)

- Contract with
Blackrock AND
Disney :)

12

