Benedikt Bitterli, Simon Kallweit, Marcel Marti



Current Status

The functional minimum, the low target and the desirable target have been fully completed. In
addition, some of the high and extra targets have been implemented.

We also put effort into making levels and testing, and put lots of time into polishing and adding
small graphical effects to make the game look like a finished product.

Implemented features

Functional Minimum e Fluid Simulation
Editable terrain
Extremely basic, side view
rendering

e Sandbox style gameplay

Low Target e Season changers
Switches and gates
Season sensitive gates

Desirable Target Water pumps

Water pipes

Textured terrain

Season dependent graphical

effects

High Target e Procedural audio

Extra Target e Post process effects shaders

Design Revisions

On the original feature list, we had additional game elements such as acid and steam in the high
target. However, after making a few levels and some discussion, we decided against including
these items.

This is because it was only in the level making process that we realized how much leverage we
could get out of the basic items - gates, pumps and pipes - and that we would have had to make
a lot more levels if we were to add more complex items into the mix. The game is not fun if a
new item is introduced every other level, and so ultimately we decided against adding more
items.



Retrospective: “Do one thing well”

During the course, the most frequent advice we were given was to “do one thing well”. The idea
is to concentrate your efforts into one specific thing instead of spreading yourself too thin trying
to get everything right.

During the project, we focused our time on two of these “things”; the results are shown in the
next sections.

Fluid Simulation

Our initial “one thing” was the fluid simulation. Since the fluid physics are the core mechanic of
our game, we had to make sure it was running fast, robust and predictable to avoid a frustrating
player experience.

The initial implementation of the simulation was not very encouraging, since it was quite slow
and frequently oscillated or blew up under pressure or shocks. Fortunately though, through the
process described in our interim report, we were able to force the fluid to be fast and robust for
the game, at the cost of physical correctness.

We are quite happy with the end result and cautiously believe that we did okay on our “one thing”:




Graphics

The fluid simulation was deliberately completed very early in the game making process so that
our basic building block was firmly in place. Apart from making the planning easier, this also
meant that we had time to focus on a second “one thing” to try and do well.

For us, this meant trying to polish the graphics as much as we could. Since none of us are
artists, this does not necessarily mean good assets, but we tried to add small, good-looking
effects to get a nice and rounded look.

Extruded terrain

To make the landscape look less flat
and boring, we decided to give it a
“2.5D” look by extruding the edges of
the landscape and adding a warped,
textured top. The water is also slightly
offset into the z axis so it can be
occluded by terrain in the foreground.
We also blend textures of the side-
and top faces and add a bright, phong
shaded rim to easier distinguish the
top and side faces.

Shadows

To support the 3D look, we also added shadowing
effects to the terrain. Blocks of terrain can shadow both
the sky as well as the water, and terrain close to the
border is slightly brightened to give a nice smooth
gradient across the side face.




Dynamic particles

Particles help make the levels seem less empty and more alive. The particles change
dynamically based on the current season; in autumn, leaves blow in the background, in spring
butterflies fly accross the screen, in winter snowflakes gently fall etc.

Motion blur

To make the water look nicer in motion, we also added a small amount of post process motion
blur to emphasize interesting fluid flow. The particles are stretched along their movement
direction, weighted with a metaball kernel, and then rendered into a velocity buffer. The velocity
buffer then contains a weighted average of fluid velocities, which serves as input to a directional
gaussian blur.

The motion blur can be slow on integrated graphics cards, and the user can turn it off in the
options menu.




Anisotropic particles

To render the fluid, we use metaballs to model the surface. Unfortunately, naive metaballs make
the entire fluid look “blobby”, since all particles are small circular objects. This amounts to losing
a lot of the resolution that is provided by the simulation. To fix this, we implemented the paper
“‘Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels”, which aligns

anisotropic kernels with the principal components of the local particle distribution. This creates
large, circular blobs in the center of the fluid, but small and thin blobs aligned with the normal
near the surface. The results are seen below; classic metaballs on the left and isotropic particles

on the right:

Aeration model

Initially, the water had a single constant color
throughout the medium, which didn’t look very
good and hid a lot of interesting fluid flow from
the user. To mediate this, we consulted
literature and implemented an aeration heuristic
that models the intake of air bubbles near
splashes and surfaces and tracks the air
fraction as it moves with the fluid. The color at
a point in the fluid is then determined by the!
average air fraction, which controls an s
exponential color curve to model the absorption
of light. This gives a pleasing color mixture and &S
shows interesting swirls and eddies inside the
fluid.




