
Battle of Origins — Alpha Release

Patrick Misteli, Ruben Kälin, Jacqueline Staub, Gregory Wyss

May 4, 2015

Contents

1. Introduction 2

2. Current Stage 2
2.1 Task Distribution . 2
2.2 Project Management . 3
2.3 Timeline . 4

3. Obstacles and Revisions 6
3.1 Physics . 6

3.1.1 Explosion Forces . 6
3.2 Sound . 7

3.2.1 Animation Sound . 7
3.2.2 Walking Sound Overpowering . 7
3.2.3 Creating a wonder Sound Overpowering 7

3.3 In-Game . 7
3.3.1 Spawning in Buildings/Rocks . 7
3.3.2 Camera for Multi-Player . 8
3.3.3 Human Creating Wonder . 8

3.4 Modeling and Animations . 8
3.4.1 Rotated Model . 8
3.4.2 Left-Right, Up-Down Issue . 9
3.4.3 Unused Animations . 9
3.4.4 Scaling after Export from Maya . 9
3.4.5 Inverse Kinematics . 9
3.4.6 Body parts growing . 10
3.4.7 Shadows . 10

3.5 AI . 10
3.5.1 Praying for Human Players . 10

4. Alpha Release Conclusion 10

1

1. Introduction

This document describes the current working stage (Sec. 2.) and the progress that has
been made between the interim release and the alpha release (Sec. 3.). The ideal would be
to have a stable alpha release to tweak in game values such as number of players, number
of obstacles, time to create a wonder and so on.

2. Current Stage

2.1 Task Distribution

See Table 1

Task Description Who Hrs Actual
Idea Finding

1. Brainstorming Design All 5 7
2. Character modeling Greg, Jacq 20 25

Assignments
3. Project Proposal Draft All 10 10
4. Prototype Chapter All 10 10
5. Interim Report Chapter All 10 10
6. Alpha Release Chapter All 10 10
7. Playtest Chapter All 10
8. Conclusion Chapter All 10
9. Demo Video Patrick 50

Presentation and Demos
10. Pitch of the Game All 7 7
11. Formal Game Proposal All 10 12
12. Paper Prototype Jacqueline 5 6
13. First Playable Demo All 30 50
14. Interim Demo All 50 80
15. Alpha Release Demo All 100 50
16. Play-test presentation All 75
17. Final Public Presentation All 40

Functional Minimum
18. Players from two teams running around All 15 15
19. Level Design: Overflow flat Map All 15 7
20. Counting collective hits All 15 8
21. Game finishes after 8 min All 15 10
22. Winner is Team with most hits All 15 14
23. AI Controlled Allies/Enemies. Ruben 15 25

Table 1: Task allocation Green: Completed

2

2.2 Project Management

See Table 2

Task Description Who Hrs Actual
Low Target

24. Audio: Music + Sound Effects Patrick 15 2
25. Physics: Players flying away when hit All 15 10
26. Physics: Cooldown before being able to move & attack All 15 17
27. Physics: Immunity cooldown before being vulnerable again All 15 13
28. Wonder: Wonder is generated after every 50 collective hits All 15 24
29. Wonder: Wonder is (visually) possessed by a human player All 15 10
30. Wonder: Wonder can visually be cast All 15 12
31. Wonder: Wonder converts players All 15 16
32. Wonder: Converted Human player plays for the other team All 15 5
33. Winner is the team with the most members All 15 20
34. Level Design: Map includes obstacles All 15 7

Desired Target
35. Characters visually polished to look from same theme Jacqueline,

Gregory
15 150

36. Wonder Creation: Creating a wonder by standing together
and pressing "commit"

All 15 11

37. Wonder Creation: Cooldown after releasing "commit" All 15 14
38. Wonder Creation: Increased vulnerability during praying and

cooldown
All 15

39. Wonder Creation: Larger praying/studying circles will gener-
ate quicker progress

All 15

40. Wonder Creation: AI upgrade to take wonder creation into
account

All 15 20

High Target
41. Converted Human player will control free NPC if available All 15
42. Players evolve numerically according to their actions (Run-

ning, Shooting, Praying/Studying)
All 15 30

43. Players evolve visually All 15
Extras

44. Online Multiplayer All 15
45. Procedural level-design (each level is different) All 15
46. Classes of characters (specialized for praying/studying or

shooting)
All 15

Table 2: Task allocation Green: Completed, Yellow: in Progress

3

2.3 Timeline

See Table 3 and Table 4

Task W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14
Idea Finding

1. A A
2. G G

Assignments
3. A A
4. J A
5. A A A A
6. A A
7. A
8. A A
9. A A

Presentation and Demos
10. A
11. A
12. A
13. A
14. A
15. A
16. A
17. A

Table 3: Timeline
A = All, P = Patrick, R = Ruben, J = Jacqueline, G = Gregory

4

Task W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14
Functional Minimum

18. A
19. A
20. A
21. A
22. A
23. A

Low Target
24. P P P
25. A
26. A
27. A
28. A
29. A
30. A
31. A
32. A
33. A
34. A

Desired Target
35. A
36. A
37. A
38. A
39. A
40. A

High Target
41. R R
42. A
43. A A

Extras
44. A
45. A
46. A

Table 4: Timeline
A = All, P = Patrick, R = Ruben, J = Jacqueline, G = Gregory

5

3. Obstacles and Revisions

3.1 Physics

3.1.1 Explosion Forces

When an opponent is hit we want him and the surrounding opponents to fly away. Using
the addExplosionForce would sometimes not affect an opponent within reach and the
opponent would simply stand still. Furthermore we could not add a y force because of
the NavMesh. The NavMesh is needed for the AI to find a path to their new target thus
disabling it is not an option.

Approach 1: We tried adding forces manually by calculating the vector going from
the explosion origin to all surrounding targets. This did also not give us the desired result
since adding a force in one frame would not affect a character enough to be noticed visually

Approach 2: We increased the forces in approach 1 until we saw the characters visu-
ally move. The problem now was that the characters moved within one frame thus creating
a teleportation effect rather than an explosion effect. Ultimately in the game this does not
make a difference since after being hit the character should be moved to a location slightly
further away and regain the ability to move after a short timeout. However due to visual
aspect we decided to pursue the problem further

Approach 3: After a hint from a teaching assistant we started a new project where
we exclusively test explosion effects. Starting from 0 again we could determine a way to
have the desired explosion effect without suffering any other major issues.

Solution: Multiple factors have helped us getting the desired explosion effect.

• Use addExplosionForce.

• Make sure the distance of the explosion origin and the character is large enough. If
the explosion takes place inside a collider of a character he is only partially affected
since some forces cancel each other out.

• Temporarily turn off NavMesh as soon as a character gets hit. This allows forces in
the positive y direction.

• Same Mass and Drag for all characters. This brings consistency over all characters.

• Turn off root transformation in the animator.

• Temporarily turn off rotation freeze while in flight. This allows a stronger visual
effect then the character is hurled and spun away.

When applying all these items a new problem arises. After a character has fallen a script
will attempt to re-enable the NavMesh. However it can happen that a character flies

6

unto a house or rock where the NavMesh cannot be enabled anymore. This was solved in
two ways. The buildings have improved colliders (described in Section 3.3.1) which make
landing on a building less likely. If it does happen a character is respawn after 10 seconds.
Furthermore if the character is near the ground but cannot connect to the NavMesh the
character is teleported to the nearest point on the NavMesh. The teleporting distance is
mostly small enough to not be visually detectable.

3.2 Sound

3.2.1 Animation Sound

Adding a sound to a animation can be done in two ways. Adding it in the animation directly.
This would require adapting all animations and gives very little control over the sounds
within the game scripts. A second solution is to add a script to an animation which carries
the audio source. For an inexplicable reason this is also not possible as the sound file
cannot be loaded within an animation.

Solution: We created a central audio manager that takes care of all the sounds and
can be called from all scripts.

3.2.2 Walking Sound Overpowering

Having a walking sound for each character adds to the realism. However hearing the
footsteps of potentially 100 characters results in a noisy clutter of sounds.

Solution: The central audio manager keeps track of all walking characters and will
play at most 5 walking sounds at the same time.

3.2.3 Creating a wonder Sound Overpowering

Analogically to the problem described in Section 3.2.2 the same problem appears when gen-
erating a wonder. Every character can potentially create a wonder resulting in potentially
hundreds of wonder-creating-sounds.

Solution: (Same solution as in Section 3.2.2. The central audio manager keeps track
of all walking characters and will play at most 5 walking sounds at the same time.

3.3 In-Game

3.3.1 Spawning in Buildings/Rocks

Characters sometimes spawn in buildings. We select a random point on the map but do
not check whether this point is inside a building, rock or church. If a character is spawned
inside such an object he cannot escape it

7

Solution: The actual problem was that the NavMesh inside a building was determined
as walkable since the buildings had no floor. After inserting a floor and adding a collider
surrounding the building characters stopped spawning inside buildings.

3.3.2 Camera for Multi-Player

Camera perspective: In a multiplayer setting, the camera needs to zoom in and out and
move around according to the players positions. However, vertically the camera always
showed more than the size we set it to.

Solution: The reason for the difference between the vertical and the horizontal axis
originated in the fact that our orthographic camera perspective was tilted by 45 degree.
Thus, we had to divide the vertical axis by a factor of sqrt(2) in order to get consistency
among the axis.

3.3.3 Human Creating Wonder

The implementation of the praying mechanics for human players was difficult, because it
is hard to guess the exact intention of the player. If the player wants to pray with an other
player who is currently attacking it should fail, whereas if the other player also prays
it must work. Moreover, finding all players close by is a costly operation and cannot be
executed for each player at each update step.

Solution: NPCs select a target to pray with and efficiently check if this target is
eligible for praying and close enough. Since this trick does not work for human players
we introduced a commit command. The close players are then only computed for players
pressing the commit button. This provides an efficient enough solution that allows also
human players to actively pray.

3.4 Modeling and Animations

3.4.1 Rotated Model

Unity and Blender do not use the same axes to to represent the three directions. Exporting
a correctly oriented model from Blender to Unity resulted in a rotated model in Unity. This
problem seems to be one of the things users of Blender just need to know, wile modelling.
We did not find a script to resolve this issue.

Solution: We just rotated the model in Blender before exporting it to Unity. Further-
more we had to be careful to assign the correct up, and forward direction in the exportation
process.

8

3.4.2 Left-Right, Up-Down Issue

After the orientation of our models were correct we encountered the issue, that the model
we wanted to use had the opposite top-down, left-right orientation. Since we have two
models which should be controlled the same way their orientation should match, which
was not the case.

Solution: We resolved the issue by multiplying the X and Z axis by a factor of -1.

3.4.3 Unused Animations

Animations are linked to a fake user in Blender, so they are really hard to delete afterwards.
We tested some animations, we ultimately don’t need anymore, but they were hard to get
rid of since they were linked to the fake user.

Solution: We decided to keep all animations. After the settings are made in the
animation controller everything is fine anyway, and they might come in handy someday...

3.4.4 Scaling after Export from Maya

We had the problem that each time we tried to import an animation from Autodesk Maya,
while playing the animation the mesh of the character was scaled by a factor of 2.54. After
several mails with our tutors and hours of internet research we found that after locking
the character definition in Maya for some reason each bone was scaled by the mentioned
factor. This problem could not be solved in Maya, because we did not find a solution.

Solution: perform a little hack. As before we import the animations into Unity. Then
we copy the animation clip in the FBX file and assign this animation to the animation
controller. In the animation window of unity we could find scale properties in all imported
animations that scale the whole mesh by 2.54 in all directions. So, we only removed the
scaling properties in all animations.

3.4.5 Inverse Kinematics

We used bought models that already included some basic animations. Nevertheless, we
also wanted to edit these already existing animations or create new ones and use the
predefined as a template. If such an FBX animation is loaded into Maya it appears as a
forward kinematics animation with all the keyframes that rotate the joints. We would
have liked to define a control rig for the existing skeleton, to edit the existing animations
by using inverse kinematics, which is much simpler in our eyes. But when we created a
control rig for the existing character definition all keyframes and therefore all animations
were gone.

Solution: no use of inverse kinematics (only forward kinematics) when editing
predefined animations.

9

3.4.6 Body parts growing

As the skills of our characters are improving we want to visualize this process by dynami-
cally enlarge hands representing higher shooting power, enlarge feet representing higher
running speed and enlarge the head to represent higher praying/studying skills. Our
character are built up hierarchically, so our initial idea was to use the localScale property
of corresponding transforms. Unfortunately, this had no effect at all and we tried to find
some answers in the internet. So, we removed any scaling properties from the animations
so that no hierarchical scaling overwrites our changed localScale and also removed the
animations to be sure they don’t affect the scaling behavior. Then we tried to scale the
body parts by first detaching the transforms from their parents, scale them using again
the localScale properties and then re-attach them to their original parents. Until now none
of these actions did help, we even tried to assign the localScale to itself in every Update()
method as it was suggested in an answer of a forum.

Solution: we still don’t have a solution at the moment...

3.4.7 Shadows

Leafs of trees we are using in our scene are rendered using sprites and do not cast shadows
by default. Like this, only the trunk of each tree cast a shadow which resulted in a weird
looking environment.

Solution: We use a custom sprite shader that casts shadows of our leafs.

3.5 AI

3.5.1 Praying for Human Players

4. Alpha Release Conclusion

The problems we face are problems mostly deep in the code. While we do have a robust
running system on the outside we strive to perfect and polish the details. These details
also include choosing ideal parameters for the game such as number of players, duration
of a match and number of human players. This will be approached with intensive testing
which will be the next step in the project.

10

	Introduction
	Current Stage
	Task Distribution
	Project Management
	Timeline

	Obstacles and Revisions
	Physics
	Explosion Forces

	Sound
	Animation Sound
	Walking Sound Overpowering
	Creating a wonder Sound Overpowering

	In-Game
	Spawning in Buildings/Rocks
	Camera for Multi-Player
	Human Creating Wonder

	Modeling and Animations
	Rotated Model
	Left-Right, Up-Down Issue
	Unused Animations
	Scaling after Export from Maya
	Inverse Kinematics
	Body parts growing
	Shadows

	AI
	Praying for Human Players

	Alpha Release Conclusion

