e == . _ === e

Interim Report - Fruit Smashers

Nemanja Bartolovic, Matej Hamas, Daniel Keyes, Delio Vicini

April 25, 2016



1 Current progress

Overall we think we are on track and should be able to achieve everything
we initially envisioned. We are almost completely done with the functional
minimum and the low target, only one or two power-up models are still missing,
since they have not been added in the code yet. We are also making good
progress with the desirable and high target, even though there are still a few
things missing. The main things we need to do to finish the game are:

e Implement a visually appealing fruit stand demolition. This is very im-
portant, as it is the connection of our game to the theme.

e Fix the car physics: currently the cars flip too easily, which maybe neg-
atively affects player experience. For example, one can quite easily get
stuck.

Then what remains are smaller tasks from the schedule and continuous Al
improvement. The detailed schedule is shown in Figure 1 on the following page.
Some screenshots of the current state of the game are shown on the following.
pages. Some more development details and challenges are described in Section
2 of this report.



Figure 1: Screenshot showcasing the current state of our game. Green items
are finished, yellow ones are currently in development and red ones are not yet
started.



il T

Figure 3: A speed power-up in the game world.



SRR

Multiplayer
Singleplayer
Settings
Quit

Figure 4: The main menu. In the final version, the background will be replaced
by a nice screenshot.

Team One S MIaY P A Team Two

::: Canfirm Team e(an(elterlrmtmn @ Advance to Map Selection ‘ Add/Remave Bots to Team One w Add/Remove Bots to Team Two

Figure 5: The team selection menu, which also allows adding AI players to both
teams.



Map Selection

Figure 6: The map selection menu.

2 Development Details and Challenges

2.1 Rudimentary Application Modules
2.1.1 Core Application Flow

The core flow of the application is architecturally designed after the activity
stack found in Android architecture. The main idea is to have a stack of game
states, where the top one is being updated and drawn, while being initialized,
suspended and destroyed during its lifetime. When the state is added to the
stack, it is allowed to initialize itself as well as grab content from the game,
which is for simplicity, currently fully loaded into the monolithic Game object.
When the stack is empty, it’s time to close the application.

Activity diagram is indicated below.



(reate New State?

StateStack.Top() Restore() | StateStack Pushinew State()

StateStack Top().Initialize()
| StateStack Ton ). GetContent])|

StateStack Top{).Update{)

StateStack. Top().Draw()

l Statestack.Top().Suspend()

| statestack.Top) Destroy)

Exit()

Figure 7: Application state flow

2.1.2 Entity Component System

The overall architecture of objects in the game loosely follows entity compo-
nent principles, where different aspects of an entity are wrapped into separate
components and then processed and managed by corresponding systems, e.g.
Rendering or Sound components processed by RenderContext and AudioSys-
tem, respectively.

Current system allows for fairly flexible additions of new entities, with different
properties with regards to physics, visual appearance or sound.

2.1.3 Animations

The animation system is modeled to be very lightweight, allowing the system
to be embedded into the objects itself where they can manage their own anima-
tions, or subscription-based where animations can be queued into the update
calls that the current state receives.

In our game, we did not find any advanced animation requirements. As such, the
current system has only PropertyAnimations which allow flexible single prop-
erty (float, int, Color, Vector, etc.) updates with up to 15 different easing types
(Linear, SlowlIn, SlowOut, etc.). This part is fairly extendible with regards to
properties that can be animated, as well as easing types, as long as basic arith-
metic operations are available. Besides that, things such as duration, delay and
number of loops can be easily specified.

In addition, the system allows for Sequential Animations, which essentially serve



as key-frame animations that can chain up several animations and perform them
in sequence, without worrying about correct delay setups.

2.1.4 Audio

The current audio module supports registration and playback of various sound
effects, either in looped (like a car engine), or immediate one-time mode (GUI
sound effects and similar).

Even though MonoGame provides useful interface for creating 3D sound ef-
fects, playing 3D-aware sounds is a fairly challenging aspect, due to split-screen
multi-player gameplay. There’s no clear consensus on what exactly to use in
such situations, but one common practical solution seems to be to position the
sound (by adjusting pan and volume) according to the closest audio listener
(listeners are essentially all player cameras), which is the principle that we’ll
follow in our sound design.

The system also supports song playbacks for background music, with multi-
ple playlists available and shuffle mode. A playlist is picked according to the
current state. There are currently Menu and In-Game playlists.

2.1.5 Gui

The gui system that is currently in the game is modeled after WinForms /
Java Component model, which allows for easy extension and addition of new
elements. It is fairly easy to integrate with animations and extend with new
widgets.

2.1.6 Input

There are essentially two ways that a game can process user input: either by
polling or through events. Since event-driven design is favored in C#, but not
exactly provided with MonoGame input interface, we’ve built a system on top
of that one that provides event-based input and allows for minimal effort when
adding new human interface devices to the system.

Overall architecture is divided into three layers:

1. The low-level system that queries MonoGame input states and transforms
them into relevant events (e.g. ButtonPressed, ButtonDown, ButtonRe-
leased and others).

2. The key binding layer that wires together low-level events with corre-
sponding game actions, states and ranges. This layer is responsible for
key-binding and can be loaded from a configuration file (we use xml).



3. The input mapping layer, which is responsible for calling delegates that
were registered for every game action. Note that this layer has no notion
of underlying input device or actual button pressed, which allows for full
input abstraction.

Range-based input is also implemented for fine-grain control over certain actions

that support it (e.g. steering amount with thumbsticks).

The design of this system is based on the concepts described in http://www.gamedev.net/blog/355 /entry-
2250186-designing-a-robust-input-handling-system-for-games//.

2.2 Graphical aspects
2.2.1 Progress

We already modelled the car, the fruitstand, several house variants and some of
the power-ups. We also implemented a system to author levels in Maya (using
Maya references), from where we can export a level description as a text file to
then load the appropriate models at runtime.

Figure 8: Screenshot of the current level in Maya. We had to use low poly proxy
objects for our houses, since Maya’s performance with references is quite bad.

The current rendering pipeline supports phong shading, including normal
and specular mapping as well as simple exponential fog. Also alpha blending and
cutout opacity are supported. The alpha blending is used for the car windows
and the cutout opacity for the balconies. We also implemented cascading shadow
mapping, currently using 2 shadow cascades of 1024% pixels each and percentage



closer filtering. Furthermore we added high dynamic range rendering, bloom and
filmic tone mapping.

4 e
> edd

Figure 9: Screenshot showcasing the graphical fideliy of our game.

2.2.2 Challenges

The main challenge we faced was performance. Our current level has over 400
individual houses, adding up to roughly 600K triangles. Therefore just brute
force rendering all objects does simply not work. We thus first added view
frustum culling to avoid drawing objects which are not visible by the camera.
This already helped quite a bit, but we were still limited by the number of draw
calls we can issue. Note, that since our game runs in 4 player split screen, the
number of objects drawn is 4 times as large as in an equivalent single player
(or single screen) game. Also shadow mapping adds on top of that, especially
in the case of using more than one shadow cascade per player. Since view
frustum culling alone was not giving sufficiently good performance, we then
also added hardware instancing, after considering several other options. This
gave again a significant performance increase and we hope that no major further
optimizations are necessary.

2.3 Al vehicles
2.3.1 Progress

The AT vehicles are capable of playing the game, both as attackers and defenders.
When the vehicle attacks, it drives to the fruistand as quickly as possible and
tries to reach it at a high velocity. For now, when it’s playing the defending
role, it stops nearby the fruitstand, blocking the street.

10



Given the top down view of the map, we have created several Matlab scripts
that allow to conveniently specify points and edges of interest using a mouse.
This enables us to build an abstract graph that is used to

e guide Al driving.

e define the spawn locations of fruit stands, power ups and the initial team
spawn locations.

Guemenh I 18y o

(o _m g me Q[
| _w—= paam B Al
e S § %4'1 |

Y

] | S
I

Figure 10: Screenshot of the graph created on the top of the current map.

11



Figure 11: Screenshot of the graph visualized in the game itself. We’ve added
this feature for development purposes.

Given the target vertex, the AI vehicle computes the shortest path from its
position to that vertex using the Dijkstra algorithm. It then drives along this
path, trying to drive as fast as possible while avoiding collisions.

We have implemented heuristics to be able to drive fast and slow down just
before the turns. Also, when a crash is detected, the car reverses a bit and then
tries to get onto the original path. If this is not possible, we respawn the car on
the road nearby the location where it crashed.

Some heuristics, such as the distance needed to brake to the zero speed
starting at a given velocity, are based on experiments. Others, such as the crash
detection, make use of the ray tracing capabilities of the BEPU library.

12



70 . i | . : i i 1

data
fitted curve

[ £ £n
= = —
T T T
" " "

Distance to complete rest

[
=

0 10 20 30 40 50 &0 o 80 90
Speed at which the car actively starts braking

Linear model Poly2:

fix) = pl*x"™2 + p2*x + p3

Coefficients (with 95% confidence bounds):
pl = 0.008005 (0.007812, 0.0081897)
p2 = 0.09453 (0.08079, 0.1083)
g3 = 0.6595 (0.5044, 0.8147)

Figure 12: Given the starting speed (x-axis), the y-axis shows the distance
needed to reach complete rest when the vehicle actively brakes. The data from
the experiment are shown in black and the fitted quadratic curve in red. The
fitted parabola is used in the code to estimate the optimal current speed. The
AT vehicle either accelerates or brakes to reach this speed.

2.3.2 Challenges

The main challenge is to minimize the number of crashes while driving as fast
as possible. This means accelerating when the street is straight and braking in
front of the crossroads. Since the streets have different widths and crossroads
different angles, this is not trivial. So far, we have put considerable effort into
this part and the performance is quite satisfiable. If it turns out that the Al cars
still crash too much, we will attempt to further optimize their driving behavior.

13



2.3.3 Future Development

Next steps will be to modify the defending mode where the AI vehicle will not
just stop nearby the fruitstand, but will move back and forth to make it more
difficult for attackers. After that, we will concentrate on making AI vehicles
trying to crash the opponent.

2.4 Physics
2.4.1 Progress

The core simulation of our game is handled using the BEPU physics library.
This gives us a number of useful components out-of-the-box, including vehicle
prefabs, shape primitives, containers for meshes, and collision detection and
solving for those previous components. Vehicles, scenery, and some debris in
the game are linked to BEPU entities to provide realistic physics. Fruitstands
do not go through the full pipeline, but rather use BEPU to detect collisions
for triggering game objectives.

2.4.2 Challenges

One challenge with BEPU is achieving a stable simulation. With very large
numbers of objects (like stacked fruit meshes), the simulation becomes both
unrealistic and sluggish. Currently, we address this by showing simple anima-
tions instead of properly simulating complex fruit-based physics. In the future
though, we plan to tweak the collision rules (to disable some interactions) and
collision shapes (to simplify other interactions) to achieve more realistic fruit-
stand destruction.

14



