i,i@ Game
Survival of the Carrot People: Interim report ETH Q E;%%';g%’:‘y‘"g

Survival of the
CARROT PEOPLE

Interim report

17.03.2014 Lukas Elmer, Ivo Nussbaumer 1

Survival of the Carrot People: Interim report

Introduction
As presented on the 1st of April, the functional minimum has already been implemented. After

We- Game
o4 Programming
ETH

«®\ Laboratory

this, we worked on implementing the low target and the desired target.

Implemented Features

First, the functional minimum was implemented. This was a good way to start with Unity. After
implementing the functional minimum, instead of continuing with the low target, it was decided

that the core game idea should be tackled next: growing trees using an L-System.
Here is an overview of the progress:

Fully Functional minimum: Basic tower defense functionality:
implemented
e Tower placement
features
e Tower attacks
e Monster spawning
e HUD
e One playable level
e One enemy monster
In progress Growing tower (graphical, L-System)
Smooth path
Planned New:

e Software engineering, refactoring
Low target:

Growing tower (technical, no L-System yet)
A tower can split a branch to grow a new tower (technical, no
L-System yet, every split tower looks the same)

e Winning condition: Enemy’s Castle is overgrown by the towers /
plants of the player (technical, no L-System yet)

Desired target:

Different towers/branches

Different monsters

Attack mode for towers

Winning condition: Enemy’s Castle is overgrown by the towers /
plants of the player (graphical, L-System

17.03.2014

Lukas Elmer, Ivo Nussbaumer

.
~e. Game)
xi(;/ Programming

Survival of the Carrot People: Interim report @ Laboratory

e Animated monsters and towers
e Special tower skills (poison, slow-down, etc.)

Growing Trees / L-System

Unfortunately, this task was harder than anticipated, and therefore it is still work in progress.
Currently, the idea is that the unity tree framework can be used. However, it is optimized to be

used from the GUI, and therefore is difficult to use from the code (it has to be dynamic, that is the
major problem).

@ Inspector]
[[BigTree | Clstatic +
Tag | Untagged # | Layer| Default 3]
Prefab | Select | Revert | Apply J

¥ .~ Transform
Position 7.1668!
Rotation
Scale

1@] ARG

7
Move Branch

Select a branch spline point and drag ta mave it.

Distribution
Group Seed
Frequency

Distribution]

Growth Scale 0968 [
e— Growth Angle

Tree editing in the Unity GUI

17.03.2014 Lukas Elmer, Ivo Nussbaumer 3

e~ Game)
Survival of the Carrot People: Interim report ETH Ear%%rrgfc:‘)rrr}','"g

New Requirements
During the last weeks, the following new Requirements were discovered.

Software engineering / refactoring

In the complex Unity framework nearly everything is possible. There are many online tutorials to
implement certain things, but many of those are hacks which don’t work in large projects. After
implementing the functional minimum, the project was, from a software engineering prespective,
a mess.

There is an article about best practices on
http://devmag.org.za/2012/07/12/50-tips-for-working-with-unity-best-practices/. It is planned to
implement some of those concepts and to rewrite some stuff, so that these software
engineering issues can be resolved.

Smooth Path

In the current implementation, the path can be defined by multiple checkpoints. They then are
connected automatically and the path is drawn on the map. The monsters follow the path until
they reach the last checkpoint.

Currently, the checkpoints are connected by straight lines. This doesn’t look nice and smooth,
and also the enemy units only walk straight.

The new functionality is that that the line is interpolated between the chechpoints in a way that
the path looks smooth (e.g. using B-Splines / Bézier curves).

Example of B-Splines

17.03.2014 Lukas Elmer, Ivo Nussbaumer 4

http://www.google.com/url?q=http%3A%2F%2Fdevmag.org.za%2F2012%2F07%2F12%2F50-tips-for-working-with-unity-best-practices%2F&sa=D&sntz=1&usg=AFQjCNE23PEwyVqrWzeNiDroLcbmQl0iCQ

