

Have you ever seen perfectly shaped food not ever going bad ?
Have you ever wished that you could do something about it ?

 Now is your chance! Pick your bacteria type and decay that food!
But be careful, other bacteria will try to sabotage you.

 ​Battle for the right to decay the food in your own way!

Team 4
Ioana Pandele

Irene Baeza
Carlota Soler

Daniel Borges

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Interim report

Task allocation

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Menu
We added a start Menu to our game. All players can move from one option to the other
using the gamepad left thumb stick. The Menu consists of the following screens.

Main Menu screen
In this screen players can choose if they want to start the game and be assigned to
random bacteria (​Play​), choose which bacteria they want to be and (​Choose Bacteria​) or
Exit​ the game.

Choose Bacteria screen
In this screen, players can choose which bacteria they want to be. With their own
gamepad, they can press the bacteria and then ​Play Game option, which bring them to
the ​Play​ screen directly.

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Play screen
This is the screen where the battle takes place. Players start in random position in the
map and they all can move around, gather little pieces of the food they are conquering
(in this case, as the map is a peach, little peaches) and explode!

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Player movement
The player controls the target velocity vector of their character with the gamepad stick.
We set a maximum velocity and an acceleration. Based the acceleration and the game
time we move the current velocity in the direction of the target velocity (Figure 1). If the
acceleration and the game time permit going over the target velocity, we clamp to it. This
introduces a form of “inertia” that makes the movement more realistic.

Figure 1: Velocity change

Collision detection and resolution

Collision Detection
In a typical situation, collision detection is achieved in two steps: a broad phase that aims
to rule out impossible collisions in order to save computation time and a narrow phase
that detects the collision at a detailed level. Given the fact that we only have at most four
moving objects and they only have to be checked against themselves and a fairly small
number of static objects, we decided to drop the broad phase and to only have a narrow
phase that involves all the objects.

The movement of the players is limited to a 2D plane and 2D collisions proved to be
satisfactory for our purposes. Because the meshes that we use don’t have large

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

concavities, we base our approach solely on the projected convex hulls of those meshes.
For this, we

first implemented Andrew’s monotone chain algorithm to ​quickly compute the convex
hulls. In order to determine if two objects intersects, we check to see if their projected
convex hulls overlap. This is achieved using the Gilbert-Johnson-Keerthi (GJK) algorithm.
The core idea of the algorithm is to leverage a property of the so called Minkowski
Difference of the convex hulls (a Minkowski Sum between polygon A and polygon -B).
This property states that two polygons overlap if and only if the Minkowski Difference
contains the origin. Because the computational complexity of getting the actual
difference is fairly large (O(n^2 log(n^2)), the algorithm employed checks for the origin
containment by constructing simplices of up to 3 vertices (in 2D) based on support points
on the Minkowski Difference in the direction of the origin. This is done until either the
origin is contained in one such triangle(for the 2D method) or until it is proven the the
origin can’t be reached.

GJK only tells us whether two convex polygons intersect, but in order to be able to
resolve the collisions, we need to also find the smallest penetration distance and its
direction. This is achieved using the Expanding Polytope Algorithm, which starts with the
simplex provided by GJK. The penetration depth is the smallest distance from the origin
to the Minkowski Difference. We find this out by constantly trying to expand the simplex
with vertices on the difference that go away from the origin, until the closest simplex
edge to the origin is an edge that belongs to the difference. The direction then is the
normal to this edge, and the depth is the distance to the origin.

Collision Resolution
There are three types of visible collisions in the game:

1. Player vs player

This is solved by moving the players away from each other, each by half of the
penetration depth.

2. Player vs resource

In this case, the resource vanishes.

3. Player vs walls

Currently the velocity of the player is reflected against the penetration direction.
This needs iterating upon, in order to achieve more “realistic” elastic collisions.

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Explosions

Particle System
To integrate explosion effects to the game, we tried to use several libraries that provide
very nice 3D particles effects, as ​Mercury Project and ​DPSF​. Monogame does not work
with them, although they are made for XNA 4.0, and we couldn’t find any way to fix it, so
we decided to create our own Particle System in the game in order to generate
explosions effects.

To integrate this explosions on the game, every time a player press the button to
explode, the game takes the particle emitter and generates a new explosion with the
corresponding particles (each player has different type of particles to generate different
effects). In the figures below, there are some examples of little and a big explosion, and
also how do they progress in time. We also use the bacteria mesh as a particle to
simulate that is the bacteria itself that is exploding and staining the food below.

Little and big explosion of blue bacteria

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Explosion at the beginning and the end of a green bacteria

Two bacteria exploding at the same time

Also, every time someone dies and spawns again in the screen, a little particle explosion
appears to make it easy to the players to spot their bacteria in the map and continue
playing

Bacteria appearing and moving with particles
around

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Floor stains
The stains are generated differently each time on the floor. The shape is generated using
primitives and deformed consequently to look like a liquid stain.

The ​methodology​ for generating the shapes is called texture advection and proceeds as
follows:

1. Generate a circle using triangle primitives placed as a triangle fan (currently using
100 triangles). (Fig. stainGeneration1))

2. Deform the outer vertices of the fan inside and out. The deformation is done in
the direction of the vector (​outerVertex​ - ​center​).
How much should these vertices be displaced? This amount is given by a
generated 2D texture that contains noise information (see Fig.stainGeneration2).
Each vertex of each triangle is deformed according to each value on a random row
of the texture. The texture is 100px x 100px and there are 100 vertices on the
triangle fan. There is a one-to-one correspondence and thanks to the tillable
property of the texture, the value on the left of the row are related with the values
on the right. This makes that the first vertex and the last one are connected
smoothly.

 + =

Fig. stainGeneration1 Fig. stainGeneration2

As a random row of the 2D texture is used to deform the stain each time, a new shape
will be generated for each explosion. Then, we’ll have as many different stains as we
want! We’ll have as many shapes as number of rows on the noise texture.

Stains do not appear still, they grow gradually! When a stain is generated, different sizes
are created until it reaches the actual radius size. This makes it to grow gradually.

https://www.reddit.com/r/gamedev/comments/28hk3h/how_to_create_animated_stains/

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Scoring

Scoring is not shaped-based anymore. Previously we used an approach based on the
geometry of the stains. As they were basic 2D circles, it was easy to compute the area
and add/ subtract the overlapping areas.

As the stains are not round anymore, the approach is completely different. The principal
idea is to count the area stained by each player. Each time a new stain is generated, the
proportional area that corresponds to this stain is added to the score of the player.
Overlapping has to be considered! Imagine that a player did already stain the floor on an
area. It explodes again next to it, and only the region of the new stain should be added to
the score (see image below).

It is difficult to say like
this, which is the region
corresponding to the
new stain.

How to do this? The stains on the board are rendered from top-down view to a texture.
This view enables to keep track of the score of the players. The score is computed by
counting pixels on this view. Checking the whole board every time is really expensive, so
instead: for every new explosion, only the new stain is checked.

How to differentiate the new stain
from the old ones? The new has a
color property that makes it
different from the old stains: it’s
Color.A is lower than the rest
(Colors have 4 channels: RGBA).
After having added the score, the
Color.A property of the new stain
is changed to the same value as
the other stains. With this, the
new stain becomes part of the old
stains present on the board.

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Player Interactions
The goal of each player is to conquer the maximum possible part of the map by
exploding and colouring the floor with its bacteria colour. To do that, each player can
gather resources, and the more resources you have, the bigger will be the explosion.
However, other players can kill you and make you loose all the resources you had
gathered! If another player explodes and you happen to be in its explosion area, you are
dead! That doesn’t mean you can’t continue playing, but you will have to wait a spawn
time and then your bacteria will randomly appear again in the map. The more resources
you gathered, the bigger is the radius of your explosion and indeed, the waiting time to
be respawned will be bigger :(

Also, players must be careful to not be killed too many times, because every three kills
you will have an extra seconds punishment and you will spawn later (detailed
explanation in Score panel part).

When you explode or get killed, all the resources you gathered are respawned gradually
all over the map. Not in the previous position, but in a new one!

Team 4​: Ioana Pandele, Carlota Soler, Daniel Borges, Irene Baeza

Score panel
Players can always look at their scores on the top of the screen. Each player has its
bacteria at the left of their mini panel, indicating their panel position. When a player is
dead, the bacteria image is replaced by a skull during the time it takes the player to
spawn again in the map.

Also, while a player is dead, a counter of the remaining seconds it will have to wait until
appearing again is shown at the right part of the screen. If other players are also dead, all
the counters will appear (in the same order as they are at the top) and players will be
able to see who is going to be alive first and prepare theirs strategies!

If a players gets killed (by other players explosions or, in future
version, dashed) too many times, it will receive a punishment. This is
shown on the second row if the score panel. Every three kills, a skull
with an hourglass will appear. This punishment works as follows:

● 0 Skulls: Player has been killed less than 3 times. Time to spawn: 2 s.
● 1 Skull: Player has been killed more than 3 times. Time to spawn: 4 s.
● 1 Skulls: Player has been killed more than 6 times. Time to spawn: 6 s.
● 3 Skulls: Player has been killed more than 9 times. Time to spawn: 8 s.

Finally, the total score of each players appear in the explosion of
their colour, at the top and right part of their own panel. It is
counted in % of the map that each player has coloured, and will
change everytime you explode with respect of your conquered
percentage.

