
Human Harvesters: Interim Report – page 1

Human Harvesters

Interim Report

Current Progress

Development schedule

Task Planned
completion date

Status

Physical prototype 20 March
Tutorials and
research

20 March

Functional
minimum

Player has an
Avatar that can
move

20 March

Player can kill
other players

27 March

Player re-spawns
when dead

3 April

Map exists 27 March
Ambient light 3 April
Low target
Map has
obstacles

3 April

Light mechanism
for invisibility
with time limit in
place

3 April

Basic
shading/lighting
(deferred
rendering)

17 April

Humans are on
the map

3 April

Players can
consume
humans

10 April

Human Harvesters: Interim Report – page 2

Desirable target
Interim report
and demo

17 April

Texturing 17 April
Game menu / GUI
etc.

10 April

Basic sounds 24 April
Animated avatars 17 April
Humans have
actual models

17 April

Background
music (not
necessarily self-
composed)

24 April

Annotated screenshots

Our menu screen – pressing
‘start’ (‘enter’ on keyboard)

brings you into a new
multiplayer game. We’ve

implemented our game with
the idea of mode-switching to
transition from mapping input
to menu-selections or game

controls. Our assets are
loaded at start-up to allow for

lightning-fast transitions
between modes.

Human Harvesters: Interim Report – page 3

Early test phase – we used
provided models from

tutorials for testing
purposes. Here you can see
our four-player split-screen
view, the first two players
having moved around. We
allowed for keyboards and
controllers to work together

to allow for a seamless
transition from PC to XBOX.

Here you can see further
development in our early-

phase (still using borrowed
models) – we have two

players moving separately,
and the “humans” (ships)
are spawned randomly

along the play plane at the
start of the game.

This is after our second
architecture re-write for

integrating the map – we
have players that can move

and humans are on the
map. However, interactions
and physics (collisions) are

still missing.

Human Harvesters: Interim Report – page 4

Implementation Challenges

Architecture
The key aspect of our game design that has taken the most time, energy, pain, anger,
fear, and tears is the architecture of how our game will be structured.

Initially, we all began coding in separate projects, experimenting with pieces of the
game that we were to develop and hoping to merge things together eventually.

We then realized that for a game of any scope to function properly and be workable, we
needed to devise an architecture that was extensible, formal, and flexible for the
addition of new components. Thus, a team of our group sat down for upwards of eight
or ten hours over a weekend to discuss and plan the master architecture for the system.
We researched typical recommended XNA game architectures online, read about C#
features and how they were integrated into the XNA framework, and attempted to utilize
XNA’s “guideline” architecture features (such as registering game components and
providing service interfaces). Over the next few days, we implemented the skeleton of
this architecture, and were just beginning to flush it out with our “actual game” when we
showed the “game” to the class.

At this point, though we did not have much functioning, we were determined that we
would be able to build upon the solid architecture that we had created and whip up our
game in no time. Don’t laugh.

Of course, there were problems. Here are some of the main ones:

• We did not balance architectural ‘style’ with ease of engineering. Making a
codebase that is beautiful architecturally, and making a codebase that is easy
and fun to build onto, are two different things. They of course have an area of
intersection, but in our initial design fell far more into the ‘architecturally beautiful’
side of the spectrum than the ‘ease of engineering.’

• We crafted an entire architecture before having made a game. We knew that

we were doing this; after all, we thought that if we planned enough at first, and if
we planned well enough, we would be able to avoid architectural overhauls down
the road. However, we just could not predict how the pieces of the game needed
to interact, and our plan lead to code that was difficult to write and somewhat
cumbersome to use in order to strictly maintain the architectural values.

• We did not coordinate further architecture changes once we went off on
our own branches. After the initial architecture was made, different groups and
individuals on the team went off to craft their own sections, and some found it
necessary to make changes to how the architecture worked. This may have been
inevitable, but we failed to properly coordinate how these changes were
happening team-wide. The result was an absolute mess of code integration and

Human Harvesters: Interim Report – page 5

modification (i.e. throwing a lot away) once we needed to starting bringing things
together.

Key Lessons Learned So Far

1. We need to all work on the same code base. We must emphasize the
celebrated ‘git workflow’ where one checks out a branch, makes some changes
and tests them, and then immediately merges back in. We continually have many
versions of the game going on at once, and there is no consensus as to which is
the ‘main’ one. Having parallel uncoordinated development go on for too long
leads to work being thrown away.

2. We need to have hard deadlines and stick to them. Because of the lack of

coordination about architecture issues, part of our group would re-implement
pieces of another architecture to make their new one ‘catch-up’ to where it had
been. This lead to multiple people in the group working on the same thing at the
same time, and because of this, deadlines were ignored because of grand
changes and merging issues. When the ‘real’ deadlines came near, we suddenly
looked again at our plan and realized that all of the pieces we had been hoping to
put together were at unclear stages of completion because different groups
within the team had gone on their own architecture and own track.

3. We need to have tighter communication. We currently have many different

places to look for messages and issues: stypi_ (a real-time document
collaboration tool), Google Docs, Trac, a forum, email, the codebase, the
repository of documents, the Twiki, Skype, texts, calls… This all leads to
scattered information and loose guidelines about what is being done by whom
and what the status of the project is. We need to pick one unified place to put our
important information and stick to it.

