PART 3 — INTERIM REPORT

This chapter describes how the game developed from an early prototype to nearly the
finished low target. It describes step by step the work that has been done and the changes
to the original planning and schedule that have been made.

WEEK 1: FUNCTIONAL MINIMUM

CHANGES

One change as been applied to the requirements fulfilled by Milestone 2. The team agreed
to delay the requirement “ReqP09 — Direct Combat 2” to the next milestone since it was
not possible to implement the attack visualization without having a player model.

ACHIEVEMENTS

Compared to the prototype, the game has matured further. The major improvements that
have been applied are in detail:

e ReqP13 and RegP14: A new type of ranged weapon has been added: The flame
thrower. Using the flame thrower, it is possible to either attack the opponent or to
destroy islands. The flamethrower does not have the same range as the ice spike,
but whatever is hit by its flames sustains heavy damage.

e ReqP12: The ice spike for which we had only a primitive implementation in the
prototype has been redefined and improved. The aiming is now easier than before.

e Reql07 and Reql08: Islands now constantly lose height while carrying a player. As
soon as a player jumps off the island it gradually regains its original height. This
feature improves the dynamics of the game by making it faster.

e Reql05: Islands can now collide with each other, allowing different islands on the
same height.

e ReqUI06: The status strings have been replaced by a first and simple HUD.

e ReqP19: Failed

PROBLEMS

The game still has several shortcomings. Some of them have been mentioned in detail in
chapter two. This is a short summary of the persisting problems:

e Navigation is not trivial

e Ice spike aiming could be better

e The game play is overloaded and needs to be streamlined
e The collision response has to be improved in certain places

THE PRODUCT




The working product features the moving islands in an already well fleshed-out form, but
without any textures. Movement between the islands is still restricted to the jetpack, while
a new gadget, the flame thrower, is available. It can be used to harm players, or islands.
The ice spike aiming has been improved, but is still lacking accuracy. Collision detection is
only done using simple collision primitives (cylinders and spheres).

WEEK 2: LOW TARGET PART 1

CHANGES

The realistic player model (ReqP03) has been moved to the desirable target, which further
delays the direct combat animation (ReqP09). Some additional requirements were
introduced, as a result of some additional play testing and findings from the prototype:
Reql14 is a new requirement for a visual indication of an island’s health (it should glow
when it gets damaged by the flame thrower). Similarly, ReqP21 is the visual indication of a
player’s frozen state (which could also be solved through the HUD). Also, ReqP04 (Island
Attraction) has been extended to also include an easy way to jump from island to island.

ACHIEVEMENTS

The game made a huge step forward in terms of visuals compared to the functional
minimum. Also, the problems of inter-island traveling have been addressed quite
successfully in the form of island jump. The collision detection is also much finer grained
compared to the simple primitives of Milestone 2. In detail, those changes are:

e Reql03: A shader for realistic Lava rendering has been written, described in-depth
in the corresponding section.

e ReqPi03: More sophisticated pillar models have been included, though they are not
textured yet.

e Reql03: Three different island models have been included.

e ReqUI04: An in-game menu has been added which will allow the selection of maps
and players.

e ReqP04: Islands can be selected using the right analog stick; the closest island in
the direction the stick points at is selected and the player can attract that island by
pressing the right trigger. He can jump to that island by pressing the left trigger.

e ReqPO05: A player can walk — or fly using the jetpack — to an attracted island.

e Reql13: Power-ups respawn on a random island after a random amount of time
after consumption.

PROBLEMS

Some problems still remain, such as:

e The collision response for standing on top of an island has some flaws; it can
happen that a player oscillates on top of an island or gets set on top although he
collided with the island’s border.




e Islands don’t collide with the cave at the back, nor are they stopped from leaving
the screen to the left, right or bottom.

e Onisland attraction, some collision response is not correct: Islands can sometimes
go through pillars.

Collision response was particularly problematic, as it can heavily depend on the frame rate:
if the frame rate drops and the time step increases, objects can fall through or collide again
after the application of collision response — and the same (maybe inappropriate) response
gets applied again. Therefore, collision response has to be fine-tuned and adapted to each
object interaction combination which will take up quite some time. This frame rate
dependence may also mean that we will have to multi-thread our engine, so draw and
update code can be run on separate cores und a low update time step can be guaranteed.

SCREENSHOTS

Bender 46.4 fps 1, Robot

The current game screen including the HUD.




Bender 49.9 fps

I, Robot

The green player jumping towards the selected island.

Bender 49,1 fps

Test Level

New Game Test Level

Exit Game

The Menu overlay.




PRODUCTION EXAMPLE - COLLISION DETECTION

OVERVIEW

To implement the game code in Project Magma, some sort of collision detection between a
set of entities (namely the player, power-ups, islands and pillars) was needed. As with all
the other parts of the software, the target was to keep the collision detection pluggable
and easy to configure. As with all features, this allows for reconfiguring the collision
detection at runtime. This has the advantage that we can test different collision volumes
for different entities.

In accordance to all the other parts of the software, a new property, a collision entity, and a
collision manager was introduced. Collision entities represent a “collidable” entity within
space bounded by a collision volume. They are stored inside the collision manager which
also tests for collisions between the entities. The binding between the simulation on one
side and the collision entities and the collision manager on the other side happens inside
the collision property which is attached to an actual simulation entity that should collide
with other entities.

BROAD PHASE

Broad phase collision detection is currently not optimized. The collision manager uses the
naive approach testing each collision entity against each other entity.

COLLISION VOLUMES

Collision detection supports three different types of volumes:

e Bounding spheres

e Bounding cylinders aligned to the unit y-axis

e Triangle trees. These are trees of axis aligned bounding boxes containing triangles
inside the leaf nodes. Each leaf contains up to five triangles.

The content pipeline creates all three collision volumes for each triangle mesh. The level
designer then chooses which bounding volume is assigned to a given entity.




PRODUCTION EXAMPLE - CREATING LAVA SURFACES

FIRST APPROACH: LAVA PLANES

We would like to show an example of a graphical element which we consider to be crucial
for a credible ambience of our game. This serves both as a documentation for our own
reference and for a work report for the lab.

We started our research in lava rendering by searching the web for tutorials describing how
to create lava effects in offline rendering systems like Maya. We found
http://en.9jcg.com/comm pages/blog content-art-94.htm to be the one with the nicest
results and implemented it first in Maya and then as a GPU effect.

1 - An overlay of several fractal textures (Stucco)
generated in Maya. Offsetting these with respect to
each other will be used for animation. 2 —The dark
parts of Stucco are replaced by a slight granite texture
generated in Maya. 3a — We add diffuse shading to
allow for normal mapping later on.

3b - Another fractal texture, generated in Maya and
luminance-amplified in the shader. 4a — The fractal
texture gets blended in and moves slowly over the plane
which simulates moving fog. 4b/5a — A normal map is
added to give the dark parts (stones) some structure.
5b/6 — Two cloud renderings, generated in Photoshop,
are used to generate a pseudo-random field of UV
vectors which are used to distort the texture coordinates.
This simulates air flickering due to the heat. 7 — A final
elow with Gaussian Blur is added.

We had to omit the displacement part for now, but we got everything else to work with
some tweaking. We added the heat flickering effect as described above by slightly
distorting the texture coordinates.




GOING BEYOND PLANES: PARALLAX OCCLUSION MAPPING

The effect of the shader
described above looks already
quite pretty when seen from a
perspective projection like the
one in the picture to the left.

However, we had to find out
that the effect owes much of

its dramaticism to the wide-
angle perspective we’ve used during the development of the shader. As discussed in an
earlier chapter, though, our gameplay requires an almost orthographic view onto the scene
in order to maintain maximal clarity for the players navigating in the scene.

After using the camera
parameters from the game itself,
much of the effect is lost (see
right). First, the pattern appears
to be much more monotonous

than before, and suddenly we
miss the notion of depth. Since
the angle between the camera and the ground plane is relatively flat in our setting, we
thought that it would be nice to have some actual geometric structure in the lava instead of
just plain normal mapping. To find out if this would help, we took an implementation of
Parallax Occlusion Mapping and included it into our shader.

As we show on the left, we
regained a large part of the
depth of the scene we’ve lost
previously due to the
perspective change.

At this point, we started to get
more creative by altering parameters of the individual layers. We inverted, compressed or
luminance-scaled the height map, introduced new color mappings and changed the
strength of PO mapping. Soon, it became apparent that small changes in individual
parameters led to under- or oversaturation quite fast, and the need for some simple global
tone mapping arose. As we already had a post-processing stage, this was easy to
implement and it turned out that a 3™ order Lagrange polynomial with interactively
modifiable parameters already does the trick. On the next two pages, we show examples of
results we achieved with different parameter sets.

An increasing issue of PO mapping became the performance. We are currently working on
emulating the same effect with several planes, alpha maps and alpha testing.




In this set, we inverted the
depth effect of PO mapping by
negatively scaling the occurring
gradient term. The Stucco map
which combines the textures
(see earlier) is still unchanged,
though.

First — low glow radius and
strength, linear tone mapping.

Second - all illuminations are
scaled up to create an
uniformly hot surface.

Third — exaggerated contrast.

Fourth — even more
exaggerated contrast. The black
ridges can be interpreted as
floating ashes.

First — the original shader, just
with Parallax Occlusion
Mapping enabled.

Second — a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — low glow radius but
relatively high contrast settings
in the post-processing stage.

Fourth — higher glow radius,
intentional oversaturation to
emphasize the perception of a
very bright light source in the
lava.




In this set, we inverted both the
Stucco texture and its gradient
afterwards. This leads to big,
bright, burning chunks on the
surface.

First — low glow radius and
strength, linear tone mapping.

Second - a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — enhanced contrast.

Fourth — extreme contrast.

In this set, we inverted the
Stucco texture which serves as
both a height map and a
blending operator between
texture layers. Afterwards, we
let the Gradient unchanged, so
the entire effect is just inverted.

First — low glow radius and
strength, linear tone mapping.

Second - a very big glow radius
and low-contrast settings in the
HDR post-processing stage.

Third — enhanced contrast. The
bright structures can be
interpreted as little flames
which move along the surface.

Fourth — extreme contrast. The

flame effect is exaggerated now
to indicate that the fire is really
bright.






